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The next important sequence of numbers on our agenda is named

after Jakob Bernoulli (1654–1705), who discovered curious relationships while

working out the formulas for sums of mth powers [26]. Let’s write

Sm(n) = 1m + 2m + · · ·+ nm =

n∑
k=1

km. (6.77)

(Thus we have Sm(n) = H
(−m)
n in the notation of generalized harmonic num-

bers.) Bernoulli looked at the following sequence of formulas and spotted a

pattern:

S0(n) = n

S1(n) =
1
2
n2 + 1

2
n

S2(n) =
1
3
n3 + 1

2
n2 + 1

6
n

S3(n) =
1
4
n4 + 1

2
n3 + 1

4
n2

S4(n) =
1
5
n5 + 1

2
n4 + 1

3
n3 − 1

30
n

S5(n) =
1
6
n6 + 1

2
n5 + 5

12
n4 − 1

12
n2

S6(n) =
1
7
n7 + 1

2
n6 + 1

2
n5 − 1

6
n3 + 1

42
n

S7(n) =
1
8
n8 + 1

2
n7 + 7

12
n6 − 7

24
n4 + 1

12
n2

S8(n) =
1
9
n9 + 1

2
n8 + 2

3
n7 − 7

15
n5 + 2

9
n3 − 1

30
n

S9(n) =
1
10
n10 + 1

2
n9 + 3

4
n8 − 7

10
n6 + 1

2
n4 − 3

20
n2

S10(n) =
1
11
n11 + 1

2
n10 + 5

6
n9 − n7 + n5 − 1

2
n3 + 5

66
n

Can you see it too? The coefficient of nm+1 in Sm(n) is always 1/(m + 1).

The coefficient of nm is always 1/2. The coefficient of nm−1 is always . . .

let’s see . . . m/12. The coefficient of nm−2 is always zero. The coefficient

of nm−3 is always . . . let’s see . . . hmmm . . . yes, it’s −m(m−1)(m−2)/720.

The coefficient of nm−4 is always zero. And it looks as if the pattern will

continue, with the coefficient of nm−k always being some constant times mk.

That was Bernoulli’s empirical discovery. In modern notation we write

the coefficients in the form

Sm(n) =
1

m+ 1

(
B0 n

m+1 +

(
m + 1

1

)
B1 n

m + · · ·+
(
m+ 1

m

)
Bm n

)

=
1

m+ 1

m∑
k=0

(
m + 1

k

)
Bk n

m+1−k . (6.78)
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284 SPECIAL NUMBERS

Since Sm(1) = 1, the numbers Bk satisfy an implicit recurrence relation,

m∑
k=0

(
m+ 1

k

)
Bk = m+ 1, for all m ≥ 0. (6.79)

For example,
(
2
0

)
B0 +

(
2
1

)
B1 = 2. The first few values turn out to be

n 0 1 2 3 4 5 6 7 8 9 10 11 12

Bn 1 1
2

1
6

0 −1
30

0 1
42

0 −1
30

0 5
66

0 −691
2730

(All conjectures about a simple closed form for Bn are wiped out by the

appearance of the strange fraction −691/2730.) Warning: Different
authors use different
notations for Ber-
noulli’s coefficients.
For example, many
20th-century refer-
ence books such as
[2] say that B1 is
−1/2 , not +1/2 .
Indeed, the authors
of the present book
followed that lead,
before 2021. But
we’ve now adopted
Bernoulli’s original
choice, because it
actually fits best
with 21st-century
practice.

We can prove Bernoulli’s formula (6.78) by induction on m, using the

perturbation method (one of the ways we found S2(n) = n in Chapter 2):

Sm+1(n) + (n+1)m+1 =

n∑
k=0

(k + 1)m+1 =

n∑
k=0

m+1∑
j=0

(
m+1

j

)
kj

=
m+1∑
j=0

(
m+1

j

)(
0j + Sj(n)

)

= 1+

m+1∑
j=0

(
m+1

j

)
Sj(n). (6.80)

Let Ŝm(n) be the right-hand side of (6.78); we wish to show that Sm(n) =

Ŝm(n), assuming that Sj(n) = Ŝj(n) for 0 ≤ j < m. We begin as we did for

m = 2 in Chapter 2, subtracting Sm+1(n) from both sides of (6.80). Then we

expand each Sj(n) using (6.78), and regroup so that the coefficients of powers

of n on the right-hand side are brought together and simplified:

(n+1)m+1 − 1 =

m∑
j=0

(
m+1

j

)
Sj(n) =

m∑
j=0

(
m+1

j

)
Ŝj(n) +

(
m+1

m

)
Δ

=

m∑
j=0

(
m+1

j

)
1

j+1

j∑
k=0

(
j+1

k

)
Bkn

j+1−k + (m+1)Δ

=
∑

0≤k≤j≤m

(
m+1

j

)(
j+1

k

)
Bk

j+1
nj+1−k + (m+1)Δ

=
∑

0≤k≤j≤m

(
m+1

j

)(
j+1

j− k

)
Bj−k

j+1
nk+1 + (m+1)Δ

=
∑

0≤k≤m

nk+1

k+1

∑
k≤j≤m

(
m+1

j

)(
j

k

)
Bj−k + (m+1)Δ
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6.5 BERNOULLI NUMBERS 285

=
∑

0≤k≤m

nk+1

k+1

(
m+1

k

) ∑
k≤j≤m

(
m+1−k

j− k

)
Bj−k + (m+1)Δ

=
∑

0≤k≤m

nk+1

k+1

(
m+1

k

) ∑
0≤j≤m−k

(
m+1−k

j

)
Bj + (m+1)Δ

=
∑

0≤k≤m

nk+1

k+1

(
m+1

k

)
(m+1−k) + (m+1)Δ

=
∑

0≤k≤m

nk+1

(
m+1

k+1

)
+ (m+1)Δ

= (n+1)m+1 − 1+ (m+1)Δ .

(Here Δ = Sm(n) − Ŝm(n). This derivation is a good review of the standard

manipulations we learned in Chapter 5.) Thus Δ = 0, QED.

In Chapter 7 we’ll use generating functions to obtain a much simplerHere’s some more
neat stuff that
you’ll probably
want to skim
through the first
time.

—Friendly TA

�

Start
Skimming

proof of (6.78). The key idea will be to show that the Bernoulli numbers are

the coefficients of the power series

z

1− e−z
=

∑
n≥0

Bn
zn

n!
. (6.81)

Let’s simply assume for now that equation (6.81) holds, so that we can derive

some of its amazing consequences. If we subtract 1
2
z from both sides, thereby

cancelling the term B1z
1/1! = 1

2
z from the right, we get

z

1− e−z
−

z

2
=

z

2

1+ e−z

1− e−z
=

z

2

ez/2 + e−z/2

ez/2 − e−z/2
=

z

2
coth

z

2
. (6.82)

Here coth is the “hyperbolic cotangent” function, otherwise known in calculus

books as cosh z/sinh z; we have

sinh z =
ez − e−z

2
; cosh z =

ez + e−z

2
. (6.83)

Changing z to −z gives
(
−z
2

)
coth

(
−z
2

)
= z

2
coth z

2
; hence every odd-numbered

coefficient of z
2
coth z

2
must be zero, and we have

B3 = B5 = B7 = B9 = B11 = B13 = · · · = 0 . (6.84)

Furthermore (6.82) leads to a closed form for the coefficients of coth:

z coth z =
2z

1−e−2z
−

2z

2
=

∑
n≥0

B2n
(2z)2n

(2n)!
=

∑
n≥0

4nB2n
z2n

(2n)!
. (6.85)

But there isn’t much of a market for hyperbolic functions; people are more

interested in the “real” functions of trigonometry. We can express ordinary
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286 SPECIAL NUMBERS

trigonometric functions in terms of their hyperbolic cousins by using the rules

sin z = −i sinh iz , cos z = cosh iz ; (6.86)

the corresponding power series are

sin z =
z1

1!
−

z3

3!
+

z5

5!
− · · · , sinh z =

z1

1!
+

z3

3!
+

z5

5!
+ · · · ;

cos z =
z0

0!
−

z2

2!
+

z4

4!
− · · · , cosh z =

z0

0!
+

z2

2!
+

z4

4!
+ · · · .

Hence cot z = cos z/sin z = i cosh iz/sinh iz = i coth iz, and we have I see, we get “real”
functions by using
imaginary numbers.

z cot z =
∑
n≥0

B2n
(2iz)2n

(2n)!
=

∑
n≥0

(−4)nB2n
z2n

(2n)!
. (6.87)

Another remarkable formula for z cot z was found by Euler (exercise 73):

z cot z = 1− 2
∑
k≥1

z2

k2π2 − z2
. (6.88)

We can expand Euler’s formula in powers of z2, obtaining

z cot z = 1− 2
∑
k≥1

(
z2

k2π2
+

z4

k4π4
+

z6

k6π6
+ · · ·

)

= 1− 2

(
z2

π2
H(2)
∞ +

z4

π4
H(4)
∞ +

z6

π6
H(6)
∞ + · · ·

)
.

Equating coefficients of z2n with those in our other formula, (6.87), gives us

an almost miraculous closed form for infinitely many infinite sums:

ζ(2n) = H(2n)
∞ = (−1)n−1 2

2n−1π2nB2n

(2n)!
, integer n > 0. (6.89)

For example,

ζ(2) = H(2)
∞ = 1+ 1

4
+ 1

9
+ · · · = π2B2 = π2/6 ; (6.90)

ζ(4) = H(4)
∞ = 1+ 1

16
+ 1

81
+ · · · = −π4B4/3 = π4/90 . (6.91)

Formula (6.89) is not only a closed form for H
(2n)
∞ , it also tells us the approx-

imate size of B2n, since H
(2n)
∞ is very near 1 when n is large. And it tells us

that (−1)n−1B2n > 0 for all n > 0; thus the Bernoulli numbers B2, B4, B6,

B8, . . . are alternately positive and negative.
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6.5 BERNOULLI NUMBERS 287

And that’s not all. Bernoulli numbers also appear in the coefficients of

�

Start
Skipping

the tangent function,

tan z =
sin z

cos z
=

∑
n≥1

(−1)n−14n(4n − 1)B2n
z2n−1

(2n)!
, (6.92)

as well as other trigonometric functions (exercise 72). Formula (6.92) leads

to another important fact about the Bernoulli numbers, namely that

T2n−1 = (−1)n−1 4
n(4n − 1)

2n
B2n is a positive integer. (6.93)

We have, for example:

n 1 3 5 7 9 11 13

Tn 1 2 16 272 7936 353792 22368256

(The T ’s are called tangent numbers.)

One way to prove (6.93), following an idea of B. F. Logan, is to consider

the power series

sin z+ x cos z

cos z − x sin z
= x+ (1+x2)z + (2x3+2x)

z2

2
+ (6x4+8x2+2)

z3

6
+ · · ·

=
∑
n≥0

Tn(x)
zn

n!
, (6.94)

where Tn(x) is a polynomial in x; setting x = 0 gives Tn(0) = Tn, the nthWhen x = tanw ,
this is tan(z +w) .
Hence, by Taylor’s
theorem, the n th
derivative of tanw
is Tn(tanw) .

tangent number. If we differentiate (6.94) with respect to x, we get

1

(cos z − x sin z)2
=

∑
n≥0

T ′
n(x)

zn

n!
;

but if we differentiate with respect to z, we get

1+ x2

(cos z − x sin z)2
=

∑
n≥1

Tn(x)
zn−1

(n − 1)!
=

∑
n≥0

Tn+1(x)
zn

n!
.

(Try it—the cancellation is very pretty.) Therefore we have

Tn+1(x) = (1+ x2)T ′
n(x) , T0(x) = x , (6.95)

a simple recurrence from which it follows that the coefficients of Tn(x) are

nonnegative integers. Moreover, we can easily prove that Tn(x) has degree

n + 1, and that its coefficients are alternately zero and positive. Therefore

T2n+1(0) = T2n+1 is a positive integer, as claimed in (6.93).
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Recurrence (6.95) gives us a simple way to calculate Bernoulli numbers,

via tangent numbers, using only simple operations on integers; by contrast,

the defining recurrence (6.79) involves difficult arithmetic with fractions.

If we want to compute the sum of mth powers from a + 1 to b instead

of from 1 to n, the theory of Chapter 2 tells us that

b∑
k=a+1

km =
∑b

a
(x + 1)m δx = Sm(b) − Sm(a) . (6.96)

This identity has interesting consequences when we consider negative values

of k: We have

0∑
k=−n+1

km = (−1)m
n−1∑
k=1

km , when m > 0,

hence

Sm(0) − Sm(−n) = (−1)mSm(n − 1) .

But Sm(0) = 0, so we have the identity

Sm(−n) = (−1)m+1Sm(n − 1) , m > 0. (6.97)

Therefore Sm(−1) = 0. The polynomial Sm(n) will always have the factors

(Johann Faulhaber
implicitly used
(6.97) in 1631 [119]
to find simple for-
mulas for Sm(n)
as polynomials in
n(n + 1)/2 when
m ≤ 17 ; see [222].)

n and (n+ 1), because it has the roots 0 and −1.

In general, Sm(n) is a polynomial of degree m+ 1 whose leading term is
1

m+1
nm+1. Moreover, we can set n = −1

2
in (6.97) to deduce that Sm(−1

2
) =

(−1)m+1Sm(−1
2
); if m is even, this makes Sm(−1

2
) = 0, so (n+ 1

2
) will be an

additional factor. These observations explain why we found

S2(n) = 1
3
n(n + 1

2
)(n + 1)

in Chapter 2; we could have used such reasoning to deduce the value of S2(n)

without calculating it! Furthermore, (6.97) implies that the polynomial with

the remaining factors, Ŝm(n) = Sm(n)/(n + 1
2
), always satisfies

Ŝm(−n) = Ŝm(n − 1) , m even, m > 0.

It follows that Sm(n) can always be written in the factored form

Sm(n) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

m+ 1

�m/2�∏
k=1

(n + 1
2
− αk)(n + 1

2
+ αk) , m odd;

(n + 1
2
)

m+ 1

m/2∏
k=1

(n+ 1
2
− αk)(n + 1

2
+ αk) , m even.

(6.98)
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6.5 BERNOULLI NUMBERS 289

Here α1 = 1
2
, and α2, . . . , α�m/2� are appropriate complex numbers whose

values depend on m. For example,

S3(n) = n2(n + 1)2/4 ;

S4(n) = n(n+1
2
)(n+1)(n + 1

2
+
√
7/12 )(n + 1

2
−
√
7/12 )/5 ;

S5(n) = n2(n + 1)2(n + 1
2
+
√
3/4 )(n + 1

2
−
√
3/4 )/6 ;

S6(n) = n(n+1
2
)(n+1)(n+ 1

2
+ α)(n+1

2
− α)(n+1

2
+ α)(n+1

2
− α)/7 ,

where α = 2−3/2 3−1/4
(√√

31 +
√
27 + i

√√
31−

√
27
)
.

If m is odd and greater than 1, we have Bm = 0; hence Sm(n) is divisible

by n2 (and by (n+ 1)2). Otherwise the roots of Sm(n) don’t seem to obey a

simple law.�

Stop
Skipping

Let’s conclude our study of Bernoulli numbers by looking at how they

relate to Stirling numbers. One way to compute Sm(n) is to change ordinary

powers to falling powers, since the falling powers have easy sums. After doing

those easy sums we can convert back to ordinary powers:

Sm(n) − nm + 0m =

n−1∑
k=0

km =

n−1∑
k=0

∑
j≥0

{
m

j

}
kj =

∑
j≥0

{
m

j

}n−1∑
k=0

kj

=
∑
j≥0

{
m

j

}
nj+1

j+1

=
∑
j≥0

{
m

j

}
1

j+1

∑
k≥0

(−1)j+1−k

[
j+1

k

]
nk .

Therefore, equating coefficients with those in (6.78), we must have the identity

∑
j≥0

{
m

j

}[
j+ 1

k

]
(−1)j+1−k

j+ 1
=

1

m+1

(
m+1

k

)
Bm+1−k , 0<k<m. (6.99)

It would be nice to prove this relation directly, thereby discovering Bernoulli

numbers in a new way. Do the identities in Tables 264 or 265 offer any help?

Yes, the first one is worth a try: We can replace
{
m
j

}
by

{
m+1
j+1

}
−

(j + 1)
{

m
j+1

}
. The (j + 1) nicely cancels with the awkward denominator,

and the left-hand side becomes∑
j≥0

{
m + 1

j+ 1

}[
j+ 1

k

]
(−1)j+1−k

j+ 1
−

∑
j≥0

{
m

j+ 1

}[
j+ 1

k

]
(−1)j+1−k .

The second sum is zero by (6.31), since k < m. That leaves us with the first

sum, which cries out for a change in notation; let’s rename all variables so
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that the index of summation is k, and so that the other parameters are m

and n. Then identity (6.99) is equivalent to

∑
k

{
n

k

}[
k

m

]
(−1)k−m

k
=

1

n

(
n

m

)
Bn−m , m > 0, (6.100)

because this formula holds when n = m+ 1, when n = m, and when n < m.

Good, we have something that looks more pleasant—although Tables 264

and 265 don’t suggest any obvious next step.

The convolution formulas in Table 272 now come to the rescue. We can

use (6.49) and (6.48) to rewrite the summand in terms of Stirling polynomials:{
n

k

}[
k

m

]
= (−1)n−k+1 n!

(k−1)!
σn−k(−k)· k!

(m−1)!
σk−m(k) ;{

n

k

}[
k

m

]
(−1)k−m

k
= (−1)n+1−m n!

(m−1)!
σn−k(−k)σk−m(k) .

Things are looking up; the convolution in (6.46), with t = 1, yields

n∑
k=m

σn−k(−k)σk−m(k) =
n−m∑
k=0

σn−m−k

(
−n + (n−m−k)

)
σk(m+ k)

=
m− n

(m)(−n)
σn−m

(
m− n + (n−m)

)
.

Furthermore exercise 18, with x = 0, tells us that σn(1) = −nσn(0)+ [n= 1].

Thus the sum on the left of (6.100), when n > m+ 1, is equal to

(−1)n−m

n

n!

m!
σn−m(1) =

(−1)n−m

n

(
n

m

)
(n −m)!σn−m(1) .

And finally we have σn−m(1) = Bn−m/(n − m)!, by (6.50). Thus formula

(6.100) is indeed verified, because (−1)n−mBn−m = Bn−m when n > m + 1.

(Whew.) We’ve also proved, incidentally, that Bernoulli numbers are related

to the constant terms in the Stirling polynomials: �

Stop
Skimming

Bm

m!
= −mσm(0) + [m= 1] . (6.101)

6.6 FIBONACCI NUMBERS

Now we come to a special sequence of numbers that is perhaps the

most pleasant of all, the Fibonacci sequence 〈Fn〉:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377
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6 EXERCISES 311

16 What is the general solution of the double recurrence

An,0 = an [n≥ 0] ; A0,k = 0 , if k > 0;

An,k = kAn−1,k + An−1,k−1 , integers k, n,

when k and n range over the set of all integers?

17 Solve the following recurrences, assuming that
∣∣n
k

∣∣ is zero when n < 0 or

k < 0:

a

∣∣∣∣nk
∣∣∣∣ =

∣∣∣∣n − 1

k

∣∣∣∣+ n

∣∣∣∣n− 1

k − 1

∣∣∣∣+ [n= k= 0] , for n, k ≥ 0.

b

∣∣∣∣nk
∣∣∣∣ = (n − k)

∣∣∣∣n − 1

k

∣∣∣∣+
∣∣∣∣n − 1

k− 1

∣∣∣∣+ [n= k= 0] , for n, k ≥ 0.

c

∣∣∣∣nk
∣∣∣∣ = k

∣∣∣∣n − 1

k

∣∣∣∣+ k

∣∣∣∣n− 1

k − 1

∣∣∣∣+ [n= k= 0] , for n, k ≥ 0.

18 Prove that the Stirling polynomials satisfy

(x + 1)σn(x+ 1) = (x − n)σn(x) + xσn−1(x) .

19 Prove that the generalized Stirling numbers satisfy

n∑
k=0

{
x+ k

x

}[
x

x− n + k

]
(−1)k

/(
x + k

n + 1

)
= 0 , integer n > 0;

n∑
k=0

[
x+ k

x

]{
x

x− n + k

}
(−1)k

/(
x + k

n + 1

)
= 0 , integer n > 0.

20 Find a closed form for
∑n

k=1 H
(2)
k .

21 Show that if Hn = an/bn where an and bn are integers, the denominator

bn is a multiple of 2�lgn�. Hint: Consider the number 2�lgn�−1Hn − 1
2
.

22 Prove that the infinite sum∑
k≥1

(
1

k
−

1

k+ z

)

converges for all complex numbers z, except when z is a negative integer;

and show that it equalsHz when z is a nonnegative integer. (Therefore we

can use this formula to define harmonic numbers Hz when z is complex.)

23 Equation (6.81) gives the coefficients of z/(1 − e−z), when expanded in

powers of z. What are the coefficients of z/(1 + e−z)? Hint: Consider

the identity (1+ e−z)(1 − e−z) = 1− e−2z.
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6 EXERCISES 317

72 Prove that the tangent function has the power series (6.92), and find the

corresponding series for z/sin z and ln
(
(tan z)/z

)
.

73 Prove that z cot z is equal to

z

2n
cot

z

2n
−

z

2n
tan

z

2n
+

2n−1−1∑
k=1

z

2n

(
cot

z+ kπ

2n
+ cot

z − kπ

2n

)
,

for all integers n ≥ 1, and show that the limit of the kth summand is

2z2/(z2 − k2π2) for fixed k as n → ∞.

74 Find a relation between the numbers Tn(1) and the coefficients of 1/cos z.

75 Prove that the tangent numbers and the coefficients of 1/cos z appear at

the edges of the infinite triangle that begins as follows:

1

0 1
1 1 0

0 1 2 2

5 5 4 2 0
0 5 10 14 16 16

61 61 56 46 32 16 0

Each row contains partial sums of the previous row, going alternately left-

to-right and right-to-left. Hint: Consider the coefficients of the power

series (sin z + cos z)/ cos(w+ z).

76 Find a closed form for the sum∑
k

(−1)k
{
n

k

}
2n−kk! ,

and show that it is zero when n > 0 is even.

77 When m and n are integers, n ≥ 0, the value of σn(m) is given by (6.48)

if m < 0, by (6.49) if m > n, and by (6.101) if m = 0. Show that in the

remaining cases we have

σn(m) =
(−1)m−1

m! (n−m)!

m−1∑
k=0

[
m

m−k

]
(−1)kBn−k

n− k
, integer n ≥ m > 0.

78 Prove the following relation that connects Stirling numbers, Bernoulli

numbers, and Catalan numbers:

n∑
k=0

{
n+ k

k

}(
2n

n + k

)
(−1)k

k + 1
= Bn

(
2n

n

)
(−1)n

n+ 1
.

79 Show that the four chessboard pieces of the 64 = 65 paradox can also be

reassembled to prove that 64 = 63.
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7.4 SPECIAL GENERATING FUNCTIONS 351

Table 351 Generating functions for special numbers.

1

(1− z)m+1
ln

1

1− z
=

∑
n≥0

(Hm+n −Hm)

(
m+n

n

)
zn (7.43)

z

1− e−z
=

∑
n≥0

Bn
zn

n!
(7.44)

Fmz

1− (Fm−1+Fm+1)z+ (−1)mz2
=

∑
n≥0

Fmn zn (7.45)

∑
k

{
m

k

}
k! zk

(1− z)k+1
=

∑
n≥0

nmzn (7.46)

(
z−1

)−m
=

zm

(1− z)(1 − 2z) . . . (1−mz)
=

∑
n≥0

{
n

m

}
zn (7.47)

zm = z(z + 1) . . . (z +m − 1) =
∑
n≥0

[
m

n

]
zn (7.48)

(
ez − 1

)m
= m!

∑
n≥0

{
n

m

}
zn

n!
(7.49)

(
ln

1

1− z

)m
= m!

∑
n≥0

[
n

m

]
zn

n!
(7.50)

(
z

ln(1 + z)

)m

=
∑
n≥0

zn

n!

{
m

m−n

}/(
m−1

n

)
(7.51)

(
z

1− e−z

)m

=
∑
n≥0

zn

n!

[
m

m−n

]/(
m−1

n

)
(7.52)

ez+wz =
∑

m,n≥0

(
n

m

)
wm zn

n!
(7.53)

ew(ez−1) =
∑

m,n≥0

{
n

m

}
wm zn

n!
(7.54)

1

(1− z)w
=

∑
m,n≥0

[
n

m

]
wm zn

n!
(7.55)

1−w

e(w−1)z −w
=

∑
m,n≥0

〈
n

m

〉
wm zn

n!
(7.56)
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7.6 EXPONENTIAL GENERATING FUNCTIONS 365

this is the egf of 〈g1, g2, . . . 〉. Thus differentiation on egf’s corresponds to the

left-shift operation
(
G(z) − g0

)
/z on ordinary gf’s. (We used this left-shift

property of egf’s when we studied hypergeometric series, (5.106).) Integration

of an egf gives∫z
0

∑
n≥0

gn
tn

n!
dt =

∑
n≥0

gn
zn+1

(n + 1)!
=

∑
n≥1

gn−1
zn

n!
; (7.74)

this is a right shift, the egf of 〈0, g0, g1, . . . 〉.

The most interesting operation on egf’s, as on ordinary gf’s, is multipli-

cation. If F̂(z) and Ĝ(z) are egf’s for 〈fn〉 and 〈gn〉, then F̂(z)Ĝ(z) = Ĥ(z) is

the egf for a sequence 〈hn〉 called the binomial convolution of 〈fn〉 and 〈gn〉:

hn =
∑
k

(
n

k

)
fk gn−k . (7.75)

Binomial coefficients appear here because
(
n
k

)
= n!/k! (n− k)!, hence

hn

n!
=

n∑
k=0

fk

k!

gn−k

(n − k)!
;

in other words, 〈hn/n!〉 is the ordinary convolution of 〈fn/n!〉 and 〈gn/n!〉.

Binomial convolutions occur frequently in applications. For example, we

defined the Bernoulli numbers in (6.79) by the implicit recurrence

m∑
j=0

(
m + 1

j

)
Bj = m + 1 , for all m ≥ 0;

this can be rewritten as a binomial convolution, if we substitute n for m + 1

and add the term Bn to both sides:

∑
k

(
n

k

)
Bk = Bn + n , for all n ≥ 0. (7.76)

We can now relate this recurrence to power series (as promised in Chapter 6)

by introducing the egf for Bernoulli numbers, B̂(z) =
∑

n≥0 Bnz
n/n!. The

left-hand side of (7.76) is the binomial convolution of 〈Bn〉 with the constant

sequence 〈1, 1, 1, . . . 〉; hence the egf of the left-hand side is B̂(z)ez. The egf of

the right-hand side is
∑

n≥0(Bn + n)zn/n! = B̂(z) + zez. Therefore we must

have B̂(z) = zez/(ez−1) = z/(1−e−z); we have proved equation (6.81), which

appears also in Table 351 as equation (7.44).
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Now let’s look again at a sum that has been popping up frequently in

this book,

Sm(n) = 1m + 2m + · · ·+ nm =
∑

1≤k≤n

km .

This time we will try to analyze the problem with generating functions, in

hopes that it will suddenly become simpler. We will consider n to be fixed

and m variable; thus our goal is to understand the coefficients of the power

series

S(z, n) = S0(n) + S1(n) z + S2(n) z
2 + · · · =

∑
m≥0

Sm(n) zm .

We know that the generating function for 〈1, k, k2, . . . 〉 is

1

1− kz
=

∑
m≥0

km zm ;

hence

S(z, n) =
∑
m≥0

∑
1≤k≤n

km zm =
∑

1≤k≤n

1

1− kz

by interchanging the order of summation. We can put this sum in closed

form,

S(z, n) =
1

z

(
1

z−1 − 1
+

1

z−1 − 2
+ · · · +

1

z−1 − n

)

=
1

z

(
Hz−1−1 −Hz−1−n−1

)
; (7.77)

but we know nothing about expanding such a closed form in powers of z.

Exponential generating functions come to the rescue. The egf of our

sequence 〈S0(n), S1(n), S2(n), . . . 〉 is

Ŝ(z, n) = S0(n) + S1(n)
z

1!
+ S2(n)

z2

2!
+ · · · =

∑
m≥0

Sm(n)
zm

m!
.

To get these coefficients Sm(n) we can use the egf for 〈1, k, k2, . . . 〉, namely

ekz =
∑
m≥0

km
zm

m!
,

and we have

Ŝ(z, n) =
∑
m≥0

∑
1≤k≤n

km
zm

m!
=

∑
1≤k≤n

ekz .

366



7.6 EXPONENTIAL GENERATING FUNCTIONS 367

And the latter sum is a geometric progression, so there’s a closed form

Ŝ(z, n) =
e(n+1)z − ez

ez − 1
=

enz − 1

1− e−z
. (7.78)

Eureka! All we need to do is figure out the coefficients of this relatively simple

function, and we’ll know Sm(n), because Sm(n) = m! [zm] Ŝ(z, n).

Here’s where Bernoulli numbers come into the picture. We observed a

moment ago that the egf for Bernoulli numbers is

B̂(z) =
∑
k≥0

Bk
zk

k!
=

z

1− e−z
;

hence we can write

Ŝ(z, n) = B̂(z)
enz − 1

z

=
(
B0

z0

0!
+ B1

z1

1!
+ B2

z2

2!
+ · · ·

)(
n
z0

1!
+ n2 z

1

2!
+ n3 z

2

3!
+ · · ·

)
.

The sum Sm(n) ism! times the coefficient of zm in this product. For example,

S0(n) = 0!
(
B0

n

1! 0!

)
= n ;

S1(n) = 1!
(
B0

n2

2! 0!
+ B1

n

1! 1!

)
= 1

2
n2 + 1

2
n ;

S2(n) = 2!
(
B0

n3

3! 0!
+ B1

n2

2! 1!
+ B2

n

1! 2!

)
= 1

3
n3 + 1

2
n2 + 1

6
n .

We have therefore derived the formula n = S2(n) =
1
3
n(n + 1

2
)(n + 1) for

the umpteenth time, and this was the simplest derivation of all: In a few lines

we have found the general behavior of Sm(n) for all m.

The general formula can be written

Sm−1(n) =
1

m

(
Bm(n+ 1) − Bm

)
, (7.79)

where Bm(x) is the Bernoulli polynomial defined by

Bm(x) =
∑
k

Bk

(
m

k

)
(x − 1)m−k =

∑
k

(
m

k

)
(−1)kBk x

m−k . (7.80)

Here’s why: The Bernoulli polynomial is the binomial convolution of the

sequence 〈B0, B1, B2, . . . 〉 with 〈1, x − 1, (x − 1)2, . . . 〉; hence the exponential
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368 GENERATING FUNCTIONS

generating function for 〈B0(x), B1(x), B2(x), . . . 〉 is the product of their egf’s,

B̂(z, x) =
∑
m≥0

Bm(x)
zm

m!
=

z

1− e−z

∑
m≥0

(x−1)m
zm

m!
=

zexz

ez − 1
. (7.81)

Equation (7.79) follows because the egf for 〈0, S0(n), 2S1(n), . . . 〉 is

zŜ(z, n) = z
e(n+1)z − ez

ez − 1
= B̂(z, n+1) − B̂(z, 1) = B̂(z, n+1) − B̂(z) ,

by (7.78) and (7.44).

Let’s turn now to another problem for which egf’s are just the thing:

How many spanning trees are possible in the complete graph on n vertices

{1, 2, . . . , n}? Let’s call this number tn. The complete graph has 1
2
n(n − 1)

edges, one edge joining each pair of distinct vertices; so we’re essentially

looking for the total number of ways to connect up n given things by drawing

n − 1 lines between them.

We have t1 = t2 = 1. Also t3 = 3, because a complete graph on three

vertices is a fan of order 2; we know that f2 = 3. And there are sixteen

spanning trees when n = 4:

�

�

�

�

�� �

�

�

�

���� �

�

�

�

�� �

�

�

�

�

�

�

�

�� �

�

�

�

�

�

�

�

�� �

�

�

�

���� �

�

�

�

��

�

�

�

�

�� �

�

�

�

�

�

�

�

���� �

�

�

�

���� �

�

�

�

�

�

�

�

�� �

�

�

�

�� (7.82)

Hence t4 = 16.

Our experience with the analogous problem for fans suggests that the best

way to tackle this problem is to single out one vertex, and to look at the blocks

or components that the spanning tree joins together when we ignore all edges

that touch the special vertex. If the non-special vertices form m components

of sizes k1, k2, . . . , km, then we can connect them to the special vertex in

k1k2 . . . km ways. For example, in the case n = 4, we can consider the lower

left vertex to be special. The top row of (7.82) shows 3t3 cases where the other

three vertices are joined among themselves in t3 ways and then connected to

the lower left in 3 ways. The bottom row shows 2·1×t2t1×
(
3
2

)
solutions where

the other three vertices are divided into components of sizes 2 and 1 in
(
3
2

)
ways; there’s also the case

�

�

�

�

� where the other three vertices are completely

unconnected among themselves.

This line of reasoning leads to the recurrence

tn =
∑
m>0

1

m!

∑
k1+···+km=n−1

(
n − 1

k1, k2, . . . , km

)
k1k2 . . . km tk1

tk2
. . . tkm
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432 DISCRETE PROBABILITY

38 What is the probability generating function for the number of times you

need to roll a fair die until all six faces have turned up? Generalize to

m-sided fair dice: Give closed forms for the mean and variance of the

number of rolls needed to see l of the m faces. What is the probability

that this number will be exactly n?

39 A Dirichlet probability generating function has the form

P(z) =
∑
n≥1

pn

nz
.

Thus P(0) = 1. If X is a random variable with Pr(X=n) = pn, express

E(X), V(X), and E(lnX) in terms of P(z) and its derivatives.

40 The mth cumulant κm of the binomial distribution (8.57) has the form

nfm(p), where fm is a polynomial of degree m. (For example, f1(p) = p

and f2(p) = p− p
2, because the mean and variance are np and npq.)

a Find a closed form for the coefficient of pk in fm(p).

b Prove that fm(1
2
) = (2m − 1)Bm/m, where Bm is the mth Bernoulli

number.

41 Let the random variable Xn be the number of flips of a fair coin un-

til heads have turned up a total of n times. Show that E(X−1
n+1) =

(−1)n(ln 2 + H�n/2� − Hn). Use the methods of Chapter 9 to estimate

this value with an absolute error of O(n−3).

42 A certain man has a problem finding work. If he is unemployed on

any given morning, there’s constant probability ph (independent of past

history) that he will be hired before that evening; but if he’s got a job

when the day begins, there’s constant probability pf that he’ll be laid Does TEX choose
optimal line breaks?off by nightfall. Find the average number of evenings on which he will

have a job lined up, assuming that he is initially employed and that this

process goes on for n days. (For example, if n = 1 the answer is 1− pf.)

43 Find a closed form for the pgf Gn(z) =
∑

k≥0 pk,nz
k, where pk,n is the

probability that a random permutation of n objects has exactly k cycles.

What are the mean and standard deviation of the number of cycles?

44 The athletic department runs an intramural “knockout tournament” for

2n tennis players as follows. In the first round, the players are paired off

randomly, with each pairing equally likely, and 2n−1 matches are played.

The winners advance to the second round, where the same process pro-

duces 2n−2 winners. And so on; the kth round has 2n−k randomly chosen

matches between the 2n−k+1 players who are still undefeated. The nth

round produces the champion. Unbeknownst to the tournament organiz-

ers, there is actually an ordering among the players, so that x1 is best, x2
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9.4 TWO ASYMPTOTIC TRICKS 469

Since �lgn�! grows faster than any power of n, this minuscule error is over-“We may not be big,
but we’re small.” whelmed by Σc(n) = O(n

−3). The error that comes from the original tail,

Σa(n) =
∑

k≥�lgn�

ak(n) <
∑

k≥�lgn�

k + lnn

k!
,

is smaller yet.

Finally, it’s easy to sum
∑

k≥0 bk(n) in closed form, and we have obtained

the desired asymptotic formula:

∑
k≥0

ln(n + 2k)

k!
= e lnn +

e2

n
−
e4

2n2
+O

( 1
n3

)
. (9.65)

The method we’ve used makes it clear that, in fact,

∑
k≥0

ln(n + 2k)

k!
= e lnn +

m−1∑
k=1

(−1)k+1 e
2k

knk
+O

( 1

nm

)
, (9.66)

for any fixed m > 0. (This is a truncation of a series that diverges for all

fixed n if we let m→ ∞.)

There’s only one flaw in our solution: We were too cautious. We de-

rived (9.64) on the assumption that k < �lgn�, but exercise 53 proves that

the stated estimate is actually valid for all values of k. If we had known

the stronger general result, we wouldn’t have had to use the two-tail trick;

we could have gone directly to the final formula! But later we’ll encounter

problems where exchange of tails is the only decent approach available.

9.5 EULER’S SUMMATION FORMULA

And now for our next trick—which is, in fact, the last important

technique that will be discussed in this book—we turn to a general method of

approximating sums that was first published by Leonhard Euler [101] in 1732.

(The idea is sometimes also associated with the name of Colin Maclaurin, a

professor of mathematics at Edinburgh who discovered it independently a

short time later [263, page 305].)

Here’s the formula:

∑
a<k≤b

f(k) =

∫b
a

f(x)dx +
m∑

k=1

Bk

k!
f(k−1)(x)

∣∣∣∣
b

a

+ Rm , (9.67)

where Rm = (−1)m+1

∫b
a

Bm

(
{x}
)

m!
f(m)(x)dx ,

integers a ≤ b;

integer m ≥ 1.
(9.68)
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On the left is a typical sum that we might want to evaluate. On the right is

another expression for that sum, involving integrals and derivatives. If f(x) is

a sufficiently “smooth” function, it will havem derivatives f ′(x), . . . , f(m)(x),

and this formula turns out to be an identity. The right-hand side is often an

excellent approximation to the sum on the left, in the sense that the remain-

der Rm is often small. For example, we’ll see that Stirling’s approximation

for n! is a consequence of Euler’s summation formula; so is our asymptotic

approximation for the harmonic number Hn.

The numbers Bk in (9.67) are the Bernoulli numbers that we met in

Chapter 6; the function Bm

(
{x}
)
in (9.68) is the Bernoulli polynomial that we

met in Chapter 7. The notation {x} stands for the fractional part x− �x�, as
in Chapter 3. Euler’s summation formula sort of brings everything together.

Let’s recall the values of small Bernoulli numbers, since it’s always handy

to have them listed near Euler’s general formula:

B0 = 1 , B1 = 1
2
, B2 = 1

6
, B4 = − 1

30
, B6 = 1

42
, B8 = − 1

30
;

B3 = B5 = B7 = B9 = B11 = · · · = 0 .

Jakob Bernoulli discovered these numbers when studying the sums of powers

of integers, and Euler’s formula explains why: If we set f(x) = xm−1, we have

f(m)(x) = 0; hence Rm = 0, and (9.67) reduces to

∑
a<k≤b

km−1 =
xm

m

∣∣∣∣
b

a

+

m∑
k=1

Bk

k!
(m − 1)k−1 xm−k

∣∣∣∣
b

a

=
1

m

m∑
k=0

(
m

k

)
Bk · (bm−k − am−k) .

For example, when m = 3 we have our favorite example of summation:

∑
0<k≤n

k2 =
1

3

((
3

0

)
B0n

3 +

(
3

1

)
B1n

2 +

(
3

2

)
B2n

)
=
n3

3
+
n2

2
+
n

6
.

(This is the last time we shall derive that famous formula in this book.) All good things
must come to
an end.

Before we prove Euler’s formula, let’s look at a high-level reason (due

to Lagrange [234]) why such a formula ought to exist. Chapter 2 defines

the difference operator Δ and explains that
∑

is the inverse of Δ, just as
∫

is the inverse of the derivative operator D. Summation over a < k ≤ b is

the operator
∑
E, because

∑
a<k≤b f(x) =

∑
a≤k<b f(x+ 1); so its inverse is

E−1Δ. We can express E−1Δ in terms of D using Taylor’s formula as follows:

f(x + ε) = f(x) +
f ′(x)

1!
ε +

f ′′(x)

2!
ε2 +

f ′′′(x)

3!
ε3 + · · · .
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Setting ε = −1 tells us that

E−1Δf(x) = f(x) − f(x− 1)

= f ′(x)/1! − f ′′(x)/2! + f ′′′(x)/3! − · · ·
= (D/1!−D2/2!+D3/3!− · · · ) f(x) = (1−e−D) f(x) . (9.69)

Here e−D stands for the differential operation 1−D/1! +D2/2! −D3/3! + · · · .
Since E−1Δ = 1−e−D, the inverse operator

∑
E = E/Δ should be 1/(1−e−D);

and we know from Table 351 that z/(1 − e−z) =
∑

k≥0 Bkz
k/k! is a power

series involving Bernoulli numbers. Thus

∑
E =

B0

D
+
B1

1!
+
B2

2!
D+

B3

3!
D2 + · · · =

∫
+

∑
k≥1

Bk

k!
Dk−1 . (9.70)

Applying this operator equation to f(x) and attaching limits yields

∑b

a
f(x+ 1) δx =

∫b
a

f(x)dx +
∑
k≥1

Bk

k!
f(k−1)(x)

∣∣∣∣
b

a

, (9.71)

which is exactly Euler’s summation formula (9.67) without the remainder

term. (Euler did not, in fact, consider the remainder, nor did anybody else

until S. D. Poisson [295] published an important memoir about approximate

summation in 1823. The remainder term is important, because the infinite

sum
∑

k≥1(Bk/k!)f
(k−1)(x)

∣∣b
a often diverges. Our derivation of (9.71) has

been purely formal, without regard to convergence.)

Now let’s prove (9.67), with the remainder included. It suffices to prove

the case a = 0 and b = 1, namely

f(1) =

∫1
0

f(x)dx+
m∑

k=1

Bk

k!
f(k−1)(x)

∣∣∣∣
1

0

− (−1)m
∫1
0

Bm(x)

m!
f(m)(x)dx ,

because we can then replace f(x) by f(x + l) for any integer l, getting

f(l) =

∫ l
l−1

f(x)dx +

m∑
k=1

Bk

k!
f(k−1)(x)

∣∣∣∣
l

l−1

− (−1)m
∫ l
l−1

Bm

(
{x}
)

m!
f(m)(x)dx.

The general formula (9.67) is just the sum of this identity over the range

a < l ≤ b, because intermediate terms telescope nicely.

The proof when a = 0 and b = 1 is by induction on m, starting with

m = 1:

f(1) =

∫1
0

f(x)dx+
1

2

(
f(1) − f(0)

)
+

∫1
0

(x − 1
2
)f ′(x)dx .
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(The Bernoulli polynomial Bm(x) was defined in (7.80) by the equation

Bm(x) =

(
m

0

)
B0x

m −

(
m

1

)
B1x

m−1 + · · ·+ (−1)m
(
m

m

)
Bmx

0 (9.72)

in general, hence B1(x) = x − 1
2
in particular.) In other words, we want to

prove that

f(0) + f(1)

2
=

∫1
0

f(x)dx+

∫1
0

(x − 1
2
)f ′(x)dx .

But this is just a special case of the formula

u(x)v(x)
∣∣1
0

=

∫1

0

u(x)dv(x) +

∫1
0

v(x)du(x) (9.73)

for integration by parts, with u(x) = f(x) and v(x) = x − 1
2
. Hence the case

m = 1 is easy.

To pass from m − 1 to m and complete the induction when m > 1, we

need to show that Rm−1 = (Bm/m!)f(m−1)(x)
∣∣1
0 + Rm, namely that

(−1)m
∫1
0

Bm−1(x)

(m − 1)!
f(m−1)(x)dx

=
Bm

m!
f(m−1)(x)

∣∣∣∣
1

0

− (−1)m
∫1
0

Bm(x)

m!
f(m)(x)dx .

This reduces to the equation

(−1)mBmf
(m−1)(x)

∣∣∣∣
1

0

=m

∫1
0

Bm−1(x)f
(m−1)(x)dx +

∫1
0

Bm(x)f(m)(x)dx.

Once again (9.73) applies to these two integrals, with u(x) = f(m−1)(x) and Will the authors
never get serious?v(x) = Bm(x), because the derivative of the Bernoulli polynomial (9.72) is

d

dx

∑
k

(
m

k

)
(−1)kBkx

m−k =
∑
k

(
m

k

)
(−1)k(m − k)Bkx

m−k−1

= m
∑
k

(
m−1

k

)
(−1)kBkx

m−1−k

= mBm−1(x). (9.74)

(The absorption identity (5.7) was useful here.) Therefore the required for-

mula will hold if and only if

(−1)mBmf
(m−1)(x)

∣∣1
0

= Bm(x)f(m−1)(x)
∣∣1
0
.
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In other words, we need to have

(−1)mBm = Bm(1) = Bm(0) , for m > 1. (9.75)

This is a bit embarrassing, because Bm(1) is actually equal to Bm, not

to (−1)mBm. But there’s no problem really, because m > 1; we know that

Bm is zero when m is odd and greater than 1. (Still, that was a close call.)

To complete the proof of Euler’s summation formula we need to show

that Bm(1) = Bm(0), which is the same as saying that∑
k

(
m

k

)
(−1)kBk = (−1)mBm , for m > 1.

But this agrees with the definition of Bernoulli numbers, (6.79), so we’re done.

The identity B ′m(x) = mBm−1(x) implies that∫1
0

Bm(x)dx =
Bm+1(1) − Bm+1(0)

m+ 1
,

and we know now that this integral is zero when m ≥ 1. Hence the remainder

term in Euler’s formula,

Rm =
(−1)m+1

m!

∫b
a

Bm

(
{x}
)
f(m)(x)dx ,

multiplies f(m)(x) by a function Bm

(
{x}
)
whose average value is zero. This

means that Rm has a reasonable chance of being small.

Let’s look more closely at Bm(x) for 0 ≤ x ≤ 1, since Bm(x) governs the

behavior of Rm. Here are the graphs for Bm(x) for the first twelve values ofm:

m = 1 m = 2 m = 3 m = 4

Bm(x)
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Although B3(x) through B9(x) are quite small, the Bernoulli polynomials

and numbers ultimately get quite large. Fortunately Rm has a compensating

factor 1/m!, which helps to calm things down.
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The graph of Bm(x) begins to look very much like a sine wave when

m ≥ 3; exercise 58 proves that Bm(x) can in fact be well approximated by a

negative multiple of cos(2πx− 1
2
πm), with error O

(
2−m maxx Bm

(
{x}
))
.

In general, B4k+1(x) is negative for 0 < x <
1
2
and positive for 1

2
< x < 1.

Therefore its integral, B4k+2(x)/(4k+2), decreases for 0 < x <
1
2
and increases

for 1
2
< x < 1. Moreover, we have

B4k+1(1− x) = −B4k+1(x) , for 0 ≤ x ≤ 1,

and it follows that

B4k+2(1− x) = B4k+2(x) , for 0 ≤ x ≤ 1.

The constant term B4k+2 causes the integral
∫1
0
B4k+2(x)dx to be zero; hence

B4k+2 > 0. The integral of B4k+2(x) is B4k+3(x)/(4k+ 3), which must there-

fore be positive when 0 < x < 1
2
and negative when 1

2
< x < 1; furthermore

B4k+3(1−x) = −B4k+3(x), so B4k+3(x) has the properties stated for B4k+1(x),

but negated. Therefore B4k+4(x) has the properties stated for B4k+2(x), but

negated. Therefore B4k+5(x) has the properties stated for B4k+1(x); we have

completed a cycle that establishes the stated properties inductively for all k.

According to this analysis, the maximum value of B2m(x) must occur

either at x = 0 or at x = 1
2
. Exercise 17 proves that

B2m(1
2
) = (21−2m − 1)B2m ; (9.76)

hence we have∣∣B2m

(
{x}
)∣∣ ≤ |B2m | . (9.77)

This can be used to establish a useful upper bound on the remainder in Euler’s

summation formula, because we know from (6.89) that

|B2m|

(2m)!
=

2

(2π)2m

∑
k≥1

1

k2m
= O

(
(2π)−2m

)
, when m > 0.

Therefore we can rewrite Euler’s formula (9.67) as follows:

∑
a<k≤b

f(k) =

∫b
a

f(x)dx+
1

2
f(x)

∣∣b
a
+

m∑
k=1

B2k

(2k)!
f(2k−1)(x)

∣∣b
a

+O
(
(2π)−2m

) ∫b
a

∣∣f(2m)(x)
∣∣dx . (9.78)

For example, if f(x) = ex, all derivatives are the same and this formula tells

us that
∑

a<k≤b e
k = (eb − ea)

(
1+ 1

2
+ B2/2! +B4/4! + · · ·+ B2m/(2m)!

)
+

474
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O
(
(2π)−2m

)
. Of course, we know that this sum is actually a geometric series,

equal to (eb+1 − ea+1)/(e− 1) = (eb − ea)
∑

k≥0 Bk/k!.

If f(2m)(x) ≥ 0 for a ≤ x ≤ b, the integral
∫b
a
|f(2m)(x)|dx is just

f(2m−1)(x)
∣∣b
a, so we have

|R2m| ≤

∣∣∣∣ B2m

(2m)!
f(2m−1)(x)

∣∣b
a

∣∣∣∣ ;
in other words, the remainder is bounded by the magnitude of the final term

(the term just before the remainder), in this case. We can give an even better

estimate if we know that

f(2m+2)(x) ≥ 0 and f(2m+4)(x) ≥ 0 , for a ≤ x ≤ b. (9.79)

For it turns out that this implies the relation

R2m = θm
B2m+2

(2m + 2)!
f(2m+1)(x)

∣∣b
a , for some 0 ≤ θm ≤ 1; (9.80)

in other words, the remainder will then lie between 0 and the first discarded

term in (9.78)—the term that would follow the final term if we increasedm.

Here’s the proof: Euler’s summation formula is valid for all m, and

B2m+1 = 0 when m > 0; hence R2m = R2m+1, and the first discarded term

must be

R2m − R2m+2 .

We therefore want to show that R2m lies between 0 and R2m − R2m+2; and

this is true if and only if R2m and R2m+2 have opposite signs. We claim that

f(2m+2)(x) ≥ 0 for a ≤ x ≤ b implies (−1)mR2m ≥ 0 . (9.81)

This, together with (9.79), will prove that R2m and R2m+2 have opposite

signs, so the proof of (9.80) will be complete.

It’s not difficult to prove (9.81) if we recall the definition of R2m+1 and

the facts we proved about the graph of B2m+1(x). Namely, we have

R2m = R2m+1 =

∫b
a

B2m+1

(
{x}
)

(2m + 1)!
f(2m+1)(x)dx ,

and f(2m+1)(x) is increasing because its derivative f(2m+2)(x) is positive.

(More precisely, f(2m+1)(x) is nondecreasing because its derivative is non-

negative.) The graph of B2m+1

(
{x}
)
looks like (−1)m+1 times a sine wave, so

it is geometrically obvious that the second half of each sine wave is more influ-

ential than the first half when it is multiplied by an increasing function. This

makes (−1)mR2m+1 ≥ 0, as desired. Exercise 16 proves the result formally.
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9.6 FINAL SUMMATIONS

Now comes the summing up, as we prepare to conclude this book.

We will apply Euler’s summation formula to some interesting and important

examples.

Summation 1: This one is too easy.

But first we will consider an interesting unimportant example, namely

a sum that we already know how to do. Let’s see what Euler’s summation

formula tells us if we apply it to the telescoping sum

Sn =
∑

1<k≤n

1

k(k + 1)
=

∑
1<k≤n

(
1

k
−

1

k+ 1

)
=
1

2
−

1

n + 1
.

It can’t hurt to embark on our first serious application of Euler’s formula with

the asymptotic equivalent of training wheels.

We might as well start by writing the function f(x) = 1/
(
x(x + 1)

)
in

partial fraction form,

f(x) =
1

x
−

1

x+ 1
,

since this makes it easier to integrate and differentiate. Indeed, we have

f ′(x) = −1/x2 + 1/(x+ 1)2 and f ′′(x) = 2/x3 − 2/(x + 1)3; in general

f(k)(x) = (−1)kk!
( 1

xk+1
−

1

(x + 1)k+1

)
, for k ≥ 0.

Furthermore∫n
1

f(x)dx =
(
lnx − ln(x+ 1)

) ∣∣n
1

= ln
2n

n + 1
.

Plugging this into the summation formula (9.67) gives

Sn = ln
2n

n+1
−

m∑
k=1

(−1)k
Bk

k

(
1

nk
−

1

(n+1)k
− 1+

1

2k

)
+ Rm(n) ,

where Rm(n) = −

∫n
1

Bm

(
{x}
)( 1

xm+1
−

1

(x + 1)m+1

)
dx .

For example, the right-hand side when m = 4 is

ln
2n

n+1
+
1

2

( 1
n

−
1

n+ 1
−
1

2

)
−
1

12

( 1
n2

−
1

(n + 1)2
−
3

4

)

+
1

120

( 1
n4

−
1

(n + 1)4
−
15

16

)
+ R4(n) .
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This is kind of a mess; it certainly doesn’t look like the real answer 1/2 −

1/(n+1). But let’s keep going anyway, to see what we’ve got. We know how

to expand the right-hand terms in negative powers of n up to, say, O(n−5):

ln
n

n + 1
= −n−1 + 1

2
n−2 − 1

3
n−3 + 1

4
n−4 +O(n−5) ;

1

n + 1
= n−1 − n−2 + n−3 − n−4 +O(n−5) ;

1

(n + 1)2
= n−2 − 2n−3 + 3n−4 +O(n−5) ;

1

(n + 1)4
= n−4 +O(n−5) .

Therefore the terms on the right of our approximation add up to

ln 2− 1
4
+ 1

16
− 1

128
+
(
−1+ 1

2
− 1

2

)
n−1 +

(
1
2
+ 1

2
− 1

12
+ 1

12

)
n−2

+
(
−1

3
− 1

2
− 2

12

)
n−3 +

(
1
4
+ 1

2
+ 3

12
+ 1

120
− 1

120

)
n−4 + R4(n) +O(n

−5)

= ln 2− 25
128

− n−1 + n−2 − n−3 + n−4 + R4(n) +O(n
−5) .

The coefficients of n−1, n−2, n−3, and n−4 match those of −1/(n + 1).

If all were well with the world, we would be able to show that R4(n) is

asymptotically small, maybeO(n−5), and we would have an approximation to

the sum. But we can’t possibly show this, because we happen to know that the

correct constant term is 1/2, not ln 2− 25
128

(which is approximately 0.4978).

So R4(n) is actually equal to 89
128

− ln 2 + O(n−5), but Euler’s summation

formula doesn’t tell us this.

In other words, we lose.

One way to try fixing things is to notice that the constant terms in the

approximation form a pattern, if we let m get larger and larger:

ln 2− 1
2
B1 +

1
2
· 3
4
B2 − 1

3
· 7
8
B3 +

1
4
· 15
16
B4 −

1
5
· 31
32
B5 + · · · .

Perhaps we can show that this series approaches 1/2 as the number of terms

becomes infinite? But no; the Bernoulli numbers get very large. For example,

B22 = 854513
138

> 6192; therefore
∣∣R22(n)∣∣ will be much larger than

∣∣R4(n)∣∣.
We lose totally.

There is a way out, however, and this escape route will turn out to be

important in other applications of Euler’s formula. The key is to notice that

R4(n) approaches a definite limit as n→ ∞:

lim
n→∞

R4(n) = −

∫∞
1

B4

(
{x}
)( 1
x5

−
1

(x + 1)5

)
dx = R4(∞) .
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The integral
∫∞
1
Bm

(
{x}
)
f(m)(x)dx will exist whenever f(m)(x) = O(x−2) as

x→ ∞, and in this case f(4)(x) surely qualifies. Moreover, we have

R4(n) = R4(∞) +

∫∞
n

B4

(
{x}
)( 1
x5

−
1

(x+ 1)5

)
dx

= R4(∞) +O
(∫∞

n

x−6 dx
)

= R4(∞) +O(n−5) .

Thus we have used Euler’s summation formula to prove that∑
1<k≤n

1

k(k + 1)
= ln 2− 25

128
− (n + 1)−1 + R4(∞) +O(n−5)

= C− (n + 1)−1 +O(n−5)

for some constant C. We do not know what the constant is— some other

method must be used to establish it—but Euler’s summation formula is able

to let us deduce that the constant exists.

Suppose we had chosen a much larger value of m. Then the same rea-

soning would tell us that

Rm(n) = Rm(∞) +O(n−m−1) ,

and we would have the formula∑
1<k≤n

1

k(k+1)
= C+c1n

−1+c2n
−2+c3n

−3 + · · ·+ cmn−m +O(n−m−1)

for certain constants c1, c2, . . . . We know that cm happens be (−1)m in

this case; but let’s prove it, just to restore some of our confidence (in Euler’s

formula if not in ourselves). The term ln n
n+1

contributes (−1)m/m to cm;

the term (−1)m+1(Bm/m)n−m contributes (−1)m+1Bm/m; and the term

(−1)k(Bk/k)(n + 1)−k contributes (−1)m
(
m−1
k−1

)
Bk/k. Therefore

(−1)mcm =
1

m
−
Bm

m
+

m∑
k=1

(
m − 1

k − 1

)
Bk

k

=
1

m
−
Bm

m
+
1

m

m∑
k=1

(
m

k

)
Bk =

1

m

(
1− Bm + Bm(2) − B0

)
.

(See (7.79).) Sure enough, it’s 1, when m ≥ 1. We have proved that∑
1<k≤n

1

k(k + 1)
= C− (n + 1)−1 +O(n−m−1) , for all m ≥ 1. (9.82)

This is not enough to prove that the sum is exactly equal to C − (n + 1)−1;

the actual value might be C − (n + 1)−1 + 2−n or something. But Euler’s
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summation formula does give us the error bound O(n−m−1) for arbitrarily

large m, even though we haven’t evaluated any remainders explicitly.

Summation 1, again: Recapitulation and generalization.

Before we leave our training wheels, let’s review what we just did from

a somewhat higher perspective. We began with a sum

Sn =
∑

1<k≤n

f(k)

and we used Euler’s summation formula to write

Sn = F(n) − F(1) +

m∑
k=1

(
Tk(n) − Tk(1)

)
+ Rm(n) , (9.83)

where F(x) was
∫
f(x)dx and where Tk(x) was a certain term involving Bk

and f(k−1)(x). We also noticed that there was a constant c such that

f(m)(x) = O(xc−m) as x→ ∞, for all large m.

Namely, f(k) was 1/
(
k(k+ 1)

)
; F(x) was ln

(
x/(x+ 1)

)
; c was −2; and Tk(x)

was (−1)k+1(Bk/k)
(
x−k − (x + 1)−k

)
. For all large enough values of m, this

implied that the remainders had a small tail,

R ′m(n) = Rm(∞) − Rm(n)

= (−1)m+1

∫∞
n

Bm

(
{x}
)

m!
f(m)(x)dx = O(nc+1−m) . (9.84)

Therefore we were able to conclude that there exists a constant C such that

Sn = F(n) + C+

m∑
k=1

Tk(n) − R
′
m(n) . (9.85)

(Notice that C nicely absorbed the Tk(1) terms, which were a nuisance.)

We can save ourselves unnecessary work in future problems by simply

asserting the existence of C whenever Rm(∞) exists.

Now let’s suppose that f(2m+2)(x) ≥ 0 and f(2m+4)(x) ≥ 0 for 1 ≤ x ≤ n.

We have proved that this implies a simple bound (9.80) on the remainder,

R2m(n) = θm,n

(
T2m+2(n) − T2m+2(1)

)
,

where θm,n lies somewhere between 0 and 1. But we don’t really want bounds

that involve R2m(n) and T2m+2(1); after all, we got rid of Tk(1) when we

introduced the constant C. What we really want is a bound like

−R ′2m(n) = φm,nT2m+2(n) ,
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where 0 < φm,n < 1; this will allow us to conclude from (9.85) that

Sn = F(n) + C+ T1(n) +
m∑

k=1

T2k(n) + φm,nT2m+2(n) , (9.86)

hence the remainder will truly be between zero and the first discarded term.

A slight modification of our previous argument will patch things up per-

fectly. Let us assume that

f(2m+2)(x) ≥ 0 and f(2m+4)(x) ≥ 0 , as x→ ∞. (9.87)

The right-hand side of (9.85) is just like the negative of the right-hand side of

Euler’s summation formula (9.67) with a = n and b = ∞, as far as remainder

terms are concerned, and successive remainders are generated by induction

on m. Therefore our previous argument can be applied.

Summation 2: Harmonic numbers harmonized.

Now that we’ve learned so much from a trivial (but safe) example, we can

readily do a nontrivial one. Let us use Euler’s summation formula to derive

the approximation for Hn that we have been claiming for some time.

In this case, f(x) = 1/x. We already know about the integral and deriva-

tives of f, because of Summation 1; also f(m)(x) = O(x−m−1) as x → ∞.

Therefore we can immediately plug into formula (9.85):

∑
1<k≤n

1

k
= lnn + C + B1n

−1 −

m∑
k=1

B2k

2kn2k
− R ′2m(n) ,

for some constant C. The sum on the left is Hn − 1, not Hn; but of course

we can add 1 to both sides. Let us call the constant γ instead of C+ 1, since

Euler’s constant γ is, in fact, defined to be limn→∞(Hn − lnn).

The remainder term can be estimated nicely by the theory we developed

a minute ago, because f(2m)(x) = (2m)!/x2m+1 ≥ 0 for all x > 0. Therefore

(9.86) tells us that

Hn = lnn+ γ+
1

2n
−

m∑
k=1

B2k

2kn2k
− θm,n

B2m+2

(2m + 2)n2m+2
, (9.88)

where θm,n is some fraction between 0 and 1. This is the general formula

whose first few terms are listed in Table 452. For example, whenm = 2 we get

Hn = lnn+ γ+
1

2n
−

1

12n2
+

1

120n4
−
θ2,n

252n6
. (9.89)
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This equation, incidentally, gives us a good approximation to γ even when

n = 2:

γ = H2 − ln 2− 1
4
+ 1

48
− 1

1920
+ ε = 0.577165 . . . + ε ,

where ε is between zero and 1
16128

. If we take n = 104 and m = 250, we get

the value of γ correct to 1271 decimal places, beginning thus:

γ = 0.57721 56649 01532 86060 65120 90082 40243 . . . . (9.90)

But Euler’s constant appears also in other formulas that allow it to be eval-

uated even more efficiently [345].

Summation 3: Stirling’s approximation.

If f(x) = lnx, we have f ′(x) = 1/x, so we can evaluate the sum of

logarithms using almost the same calculations as we did when summing re-

ciprocals. Euler’s summation formula yields

∑
1<k≤n

lnk = n lnn − n + σ+
lnn

2

+

m∑
k=1

B2k

2k(2k−1)n2k−1
+ ϕm,n

B2m+2

(2m+2)(2m+1)n2m+1

where σ is a certain constant, “Stirling’s constant,” and 0 < ϕm,n < 1. (In

this case f(2m)(x) is negative, not positive; but we can still say that the

remainder is governed by the first discarded term, because we could have

started with f(x) = − lnx instead of f(x) = lnx.)

Thus, for example,

lnn! = n lnn− n+
lnn

2
+ σ+

1

12n
−

1

360n3
+

ϕ2,n

1260n5
(9.91)

when m = 2. And we can get the approximation in Table 452 by taking ‘exp’

of both sides. (Stirling’s original formula was actually a bit different; (9.91) is

de Moivre’s modification [76]. Stirling [343, p. 137] also stated without proof

that eσ =
√
2π. We’ll soon be ready to prove that remarkable fact.)

If m is fixed and n → ∞, the general formula gives a better and better

approximation to lnn! in the sense of absolute error, hence it gives a better

and better approximation to n! in the sense of relative error. But if n is fixed

and m increases, the error bound |B2m+2|/(2m+ 2)(2m+ 1)n2m+1 decreases

to a certain point and then begins to increase. Therefore the approximation

reaches a point beyond which a sort of uncertainty principle limits the amount
Heisenberg may
have been here. by which n! can be approximated via Euler’s formula. (See exercise 26.)
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482 ASYMPTOTICS

In Chapter 5, equation (5.83), we generalized factorials to arbitrary real α

by using a definition

1

α!
= lim

n→∞

(
n + α

n

)
n−α

suggested by Euler. Suppose α is a large number; then

lnα! = lim
n→∞

(
α lnn + lnn! −

n∑
k=1

ln(α+ k)
)
,

and Euler’s summation formula can be used with f(x) = ln(x+α) to estimate

this sum:

n∑
k=1

ln(k+ α) = Fm(α,n) − Fm(α, 0) + R2m(α,n) ,

Fm(α, x) = (x+ α) ln(x + α) − x +
ln(x+ α)

2

+

m∑
k=1

B2k

2k(2k − 1)(x + α)2k−1
,

R2m(α,n) =

∫n
0

B2m

(
{x}
)

2m

dx

(x + α)2m
.

If we subtract this approximation for
∑n

k=1 ln(k+ α) from Stirling’s approx-

imation for lnn!, then add α lnn and take the limit as n→ ∞, we get

lnα! = α lnα− α+
lnα

2
+ σ

+

m∑
k=1

B2k

(2k)(2k − 1)α2k−1
−

∫∞
0

B2m

(
{x}
)

2m

dx

(x+ α)2m
,

because α lnn+n lnn−n+ 1
2
lnn−(n+α) ln(n+α)+n− 1

2
ln(n+α) → −α and

the other terms not shown here tend to zero. Thus Stirling’s approximation

behaves for generalized factorials (and for the Gamma function Γ(α+ 1) = α!)

exactly as for ordinary factorials.

Summation 4: A bell-shaped summand.

Let’s turn now to a sum that has quite a different flavor:

Θn =
∑
k

e−k2/n (9.92)

= · · ·+e−9/n+e−4/n+e−1/n+1+e−1/n+e−4/n+e−9/n+ · · · .
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9.6 FINAL SUMMATIONS 483

This is a doubly infinite sum, whose terms reach their maximum value e0 = 1

when k = 0. We call it Θn because it is a power series whose terms have

the form ep(k), where p(k) is a polynomial of degree 2; such power series are

traditionally called “theta functions.” If n = 10100, we have

e−k2/n =

{
e−.01 ≈ 0.99005, when k = 1049;
e−1 ≈ 0.36788, when k = 1050;
e−100 < 10−43, when k = 1051.

So the summand stays very near 1 until k gets up to about
√
n, when it

drops off and stays very near zero. We can guess that Θn will be proportional

to
√
n. Here is a graph of e−k2/n when n = 10:
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Larger values of n just stretch the graph horizontally by a factor of
√
n.

We can estimate Θn by letting f(x) = e−x2/n and taking a = −∞,

b = +∞ in Euler’s summation formula. (If infinities seem too scary, let

a = −A and b = +B, then take limits as A,B→ ∞.) The integral of f(x) is∫+∞
−∞

e−x2/n dx =
√
n

∫+∞
−∞

e−u2

du =
√
nC ,

if we replace x by u
√
n. The value of

∫+∞
−∞

e−u2

du is well known, but we’ll

call it C for now and come back to it after we have finished plugging into

Euler’s summation formula.

The next thing we need to know is the sequence of derivatives f ′(x),

f ′′(x), . . . , and for this purpose it’s convenient to set

f(x) = g
(
x/
√
n
)
, g(x) = e−x2

.

Then the chain rule of calculus says that

df(x)

dx
=
dg(y)

dy

dy

dx
, y =

x√
n
;

and this is the same as saying that

f ′(x) =
1√
n
g ′
(
x/
√
n
)
.

By induction we have

f(k)(x) = n−k/2g(k)
(
x/
√
n
)
.
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9 EXERCISES 491

24 Suppose an = O
(
f(n)

)
and bn = O

(
f(n)

)
. Prove or disprove that the

convolution
∑n

k=0 akbn−k is also O
(
f(n)

)
, in the following cases:

a f(n) = n−α, α > 1.

b f(n) = α−n, α > 1.

25 Prove (9.1) and (9.2), with which we opened this chapter.

26 Equation (9.91) shows how to evaluate ln 10! with an absolute error

< 1
126000000

. Therefore if we take exponentials, we get 10! with a rel-

ative error that is less than e1/126000000 − 1 < 10−8. (In fact, the ap-

proximation gives 3628799.9714.) If we now round to the nearest integer,

knowing that 10! is an integer, we get an exact result.

Is it always possible to calculate n! in a similar way, if enough terms of

Stirling’s approximation are computed? Estimate the value of m that

gives the best approximation to lnn!, when n is a fixed (large) integer.

Compare the absolute error in this approximation with n! itself.

27 Use Euler’s summation formula to find the asymptotic value of H
(−α)
n =∑n

k=1 k
α, where α is any fixed real number. (Your answer may involve

a constant that you do not know in closed form.)

28 Exercise 5.13 defines the hyperfactorial function Qn = 1122 . . . nn. Find

the asymptotic value of Qn with relative error O(n−1). (Your answer

may involve a constant that you do not know in closed form.)

29 Estimate the function 11/121/2 . . . n1/n as in the previous exercise.

30 Find the asymptotic value of
∑

k>0 k
le−k2/n with absolute errorO(n−3),

when l is a fixed nonnegative integer.

31 Evaluate
∑

k≥0 1/(c
k + cm) with absolute error O(c−3m), when c > 1

and m is a positive integer.

Exam problems

32 Evaluate eHn+H
(2)
n with absolute error O(n−1).

33 Evaluate
∑

k≥0

(
n
k

)
/nk with absolute error O(n−3).

34 Determine values A through F such that (1 + 1/n)nHn is

An + B(lnn)2 + C lnn +D+
E(lnn)2

n
+
F lnn

n
+O(n−1) .

35 Evaluate
∑n

k=1 1/kHk with absolute error O(1).

36 Evaluate Sn =
∑n

k=1 1/(n
2 + k2) with absolute error O(n−5).

37 Evaluate
∑n

k=1(n mod k) with absolute error O(n logn).

38 Evaluate
∑

k≥0 k
k
(
n
k

)
with relative error O(n−1).
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A ANSWERS TO EXERCISES 551

6.22
∣∣z/k(k + z)∣∣ ≤ 2|z|/k2 when k > 2|z|, so the sum is well defined when

the denominators are not zero. If z = n we have
∑m

k=1

(
1/k − 1/(k + n)

)
=

Hm−Hm+n+Hn, which approaches Hn as m→ ∞. (The quantity Hz−1−γ

is often called the psi function ψ(z).)

6.23 z/(1+ e−z) = 2z/(1− e−2z) − z/(1− e−z) =
∑

n≥0(2
n − 1)Bnz

n/n!.

6.24 When n is odd, Tn(x) is a polynomial in x2, hence its coefficients

are multiplied by even numbers when we form the derivative and compute

Tn+1(x) by (6.95). (In fact we can prove more: The Bernoulli number B2n

always has 2 to the first power in its denominator, by exercise 54; hence(Of course Euler
knew the Genocchi
numbers long before
Genocchi was born;
see [110], Volume 2,
Chapter 7, §181.)

22n−k \\T2n+1 ⇐⇒ 2k\\(n+1). The odd positive integers (n+1)T2n+1/2
2n

are called Genocchi numbers 〈1, 1, 3, 17, 155, 2073, . . . 〉, after Genocchi [145].)
6.25 100n − nHn < 100(n − 1) − (n − 1)Hn−1 ⇐⇒ Hn−1 > 99. (The

least such n is approximately e99−γ, while he finishes at N ≈ e100−γ, about

e times as long. So he is getting closer during the final 63% of his journey.)

6.26 Let u(k) = Hk−1 and Δv(k) = 1/k, so that u(k) = v(k). Then we have

Sn −H
(2)
n =

∑n
k=1Hk−1/k = H2

k−1

∣∣n+1
1 − Sn = H2

n − Sn.

6.27 Observe that when m > n we have gcd(Fm, Fn) = gcd(Fm−n, Fn) by

(6.108). This yields a proof by induction.

6.28 (a) Qn = α(Ln − Fn)/2 + βFn. (The solution can also be written

Qn = αFn−1 + βFn.) (b) Ln = φn + φ̂n.

6.29 When k = 0 the identity is (6.133). When k = 1 it is, essentially,

K(x1, . . . , xn)xm = K(x1, . . . , xm)K(xm, . . . , xn)

− K(x1, . . . , xm−2)K(xm+2, . . . , xn) ;

in Morse code terms, the second product on the right subtracts out the cases

where the first product has intersecting dashes. When k > 1, an induction

on k suffices, using both (6.127) and (6.132). (The identity is also true when

one or more of the subscripts on K become −1, if we adopt the convention that

K−1 = 0. When multiplication is not commutative, Euler’s identity remains

valid for k = n− 1 if we write it in the form

Km+n(x1, . . . , xm+n)Kn−1(xm+n−1, . . . , xm+1)

= Km+n−1(x1, . . . , xm+n−1)Kn(xm+n, . . . , xm+1)

− (−1)nKm−1(x1, . . . , xm−1) .

For example, we obtain the somewhat surprising noncommutative factoriza-

tions

(abc+ a+ c)(1 + ba) = (ab+ 1)(cba + a+ c)

from the case m = 0, n = 3.)
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A ANSWERS TO EXERCISES 555

by 7 only when n = 6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731,

16735, and 102728. See the answer to exercise 92.)

6.53 Summation by parts yields

n+ 1

(n + 2)2

(
(−1)m(
n+1
m+1

) ((n + 2)Hm+1 − 1
)
− 1

)
.

6.54 (a) If m ≥ p we have Sm(p) ≡ Sm−(p−1)(p) (mod p), since kp−1 ≡ 1

when 1 ≤ k < p. Also Sp−1(p) ≡ p− 1 ≡ −1. If 0 < m < p− 1, we can write

Sm(p) ≡
p−1∑
k=0

m∑
j=0

{
m

j

}
kj =

m∑
j=0

{
m

j

}
pj+1

j+ 1
≡ 0 .

(b) The condition in the hint implies that the denominator of I2n is not

divisible by any prime p; hence I2n must be an integer. To prove the hint,(The numerators of
Bernoulli numbers
played an impor-
tant role in early
studies of Fermat’s
Last Theorem; see
Ribenboim [308].)

we may assume that n>1. Then

B2n +

[
(p−1)\(2n)

]
p

+

2n−2∑
k=0

(
2n + 1

k

)
Bk
p2n−k

2n+1

is an integer, by (6.78), (6.84), and part (a). So we want to verify that none

of the fractions
(
2n+1

k

)
Bkp

2n−k/(2n + 1) =
(
2n
k

)
Bkp

2n−k/(2n − k + 1) has a

denominator divisible by p. The denominator of
(
2n
k

)
Bkp isn’t divisible by p,

since Bk has no p2 in its denominator (by induction); and the denominator

of p2n−k−1/(2n − k + 1) isn’t divisible by p, since 2n − k+ 1 < p2n−k when

k ≤ 2n−2; QED. (The numbers I2n are tabulated in [224]. Hermite calculated

them through I18 in 1875 [184]. It turns out that I2 = I4 = I6 = I8 =

I10 = I12 = 1; hence there is actually a “simple” pattern to the Bernoulli

numbers displayed in the text, including −691
2730

(!). But the numbers I2n don’t

seem to have any memorable features when 2n > 12. For example, B24 =

−86579 − 1
2
− 1

3
− 1

5
− 1

7
− 1

13
, and 86579 is prime.)

(c) The numbers 2−1 and 3−1 always divide 2n. If n is prime, the only

divisors of 2n are 1, 2, n, and 2n, so the denominator of B2n for prime n > 2

will be 6 unless 2n+1 is also prime. In the latter case we can try 4n+3, 8n+7,

. . . , until we eventually hit a nonprime (since n divides 2n−1n + 2n−1 − 1).

(This proof does not need the more difficult, but true, theorem that there are

infinitely many primes of the form 6k+ 1.) The denominator of B2n can be 6

also when n has nonprime values, such as 49.

6.55 The stated sum is m+1
x+m+1

(
x+n
n

)(
n

m+1

)
, by Vandermonde’s convolution.

To get (6.70), differentiate and set x = 0.
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6.74 Since tan 2z + sec 2z = (sin z + cos z)/(cos z − sin z), setting x = 1 in

(6.94) gives Tn(1) = 2
nEn, where 1/cos z =

∑
n≥0 E2nz

2n/(2n)!. (The coeffi-

cients En are called Euler numbers in combinatorics, not to be confused with

the Eulerian numbers
〈
n
k

〉
. We have 〈E0, E1, E2, . . . 〉 = 〈1, 1, 1, 2, 5, 16, 61, 272,

1385, 7936, 50521, . . . 〉. Numerical analysts define Euler numbers differently:

Their En is (−1)n/2En[n even] in the notation above.)

6.75 Let G(w, z) = sin z/ cos(w+z) and H(w, z) = cos z/ cos(w+z), and let

G(w, z) +H(w, z) =
∑

m,n Em,nw
mzn/m!n!. Then the equations G(w, 0) =

0 and
(

∂
∂z

− ∂
∂w

)
G(w, z) = H(w, z) imply that Em,0 = 0 when m is odd,

Em,n+1 = Em+1,n + Em,n when m + n is even; the equations H(0, z) = 1

and
(

∂
∂w

− ∂
∂z

)
H(w, z) = G(w, z) imply that E0,n = [n= 0] when n is even,

Em+1,n = Em,n+1+Em,n whenm+n is odd. Consequently the nth row below

the apex of the triangle contains the numbers En,0, En−1,1, . . . , E0,n. At the

left, En,0 is the secant number En [n even]; at the right, E0,n = Tn + [n= 0].

6.76 Let An denote the sum. Looking ahead to equation (7.49), we see

that
∑

nAnz
n/n! =

∑
n,k(−1)

k
{
n
k

}
2n−kk! zn/n! =

∑
k(−1)

k2−k(e2z−1)k =

2/(e2z + 1) = 1− tanh z. When n > 0, it follows by exercise 23 or 72 that

An = (2n+1 − 4n+1)Bn+1/(n + 1) = (−1)(n+1)/2Tn .

6.77 This follows by induction on m, using the recurrence in exercise 18. It

can also be proved from (6.50), using the fact that

(−1)m−1(m − 1)!

(ez − 1)m
= (D + 1)m−1 1

ez − 1

=

m−1∑
k=0

[
m

m− k

]
dm−k−1

dzm−k−1

1

ez − 1
, integer m > 0.

The latter equation, incidentally, is equivalent to

dm

dzm
1

ez − 1
= (−1)m

∑
k

{
m+ 1

k

}
(k − 1)!

(ez − 1)k
, integer m ≥ 0.

6.78 If p(x) is any polynomial of degree ≤ n, we have

p(x) =
∑
k

p(−k)

(
−x

k

)(
x+ n

n − k

)
,

because this equation holds for x = 0, −1, . . . , −n. The stated identity is

the special case where p(x) = xσn(x) and x = 1. Incidentally, we obtain

a simpler expression for Bernoulli numbers in terms of Stirling numbers by
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setting k = 1 in (6.99):

∑
k≥0

{
m

k

}
(−1)m−k k!

k + 1
= Bm .

6.79 Sam Loyd [256, pages 288 and 378] gave the construction He also published
it in the Brooklyn
Daily Eagle (28 Au-
gust 1904), 39; (11
September 1904), 37.
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and claimed to have invented (but not published) the 64 = 65 arrangement

in 1858. (Similar paradoxes go back at least to the eighteenth century, but

Loyd found better ways to present them.)

6.80 We expect Am/Am−1 ≈ φ, so we try Am−1 = 618034+ r and Am−2 =

381966−r. Then Am−3 = 236068+2r, etc., and we find Am−18 = 144−2584r,

Am−19 = 154 + 4181r. Hence r = 0, x = 154, y = 144, m = 20.

6.81 If P(Fn+1, Fn) = 0 for infinitely many even values of n, then P(x, y) is

divisible by U(x, y) − 1, where U(x, y) = x2 − xy − y2. For if t is the total

degree of P, we can write

P(x, y) =
t∑

k=0

qkx
kyt−k +

∑
j+k<t

rj,kx
jyk = Q(x, y) + R(x, y) .

Then

P(Fn+1, Fn)

Ftn
=

t∑
k=0

qk

(
Fn+1

Fn

)k

+O(1/Fn)

and we have
∑t

k=0 qkφ
k = 0 by taking the limit as n → ∞. Hence Q(x, y)

is a multiple of U(x, y), say A(x, y)U(x, y). But U(Fn+1, Fn) = (−1)n and

n is even, so P0(x, y) = P(x, y) −
(
U(x, y) − 1

)
A(x, y) is another polynomial

such that P0(Fn+1, Fn) = 0. The total degree of P0 is less than t, so P0 is a

multiple of U− 1 by induction on t.

Similarly, P(x, y) is divisible by U(x, y) + 1 if P(Fn+1, Fn) = 0 for

infinitely many odd values of n. A combination of these two facts gives the

desired necessary and sufficient condition: P(x, y) is divisible by U(x, y)2 − 1.
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that qn(x) = inEn(x), where En(x) is called an Euler polynomial. We have∑
(−1)xxn δx = 1

2
(−1)x+1En(x), so Euler polynomials are analogous to Ber-

noulli polynomials, and they have factors analogous to those in (6.98). By

exercise 6.23 we have nEn−1(x) =
∑n

k=0

(
n
k

)
(−1)kBkx

n−k(2 − 2k+1); this

polynomial has integer coefficients by exercise 6.54. Hence q2n(x), whose

coefficients have denominators that are powers of 2, must have integer co-

efficients. Hence pn(y) itself has integer coefficients. Finally, the relation

(4y − 1)p ′′n(y) + 2p
′

n(y) = 2n(2n − 1)pn−1(y) shows that

2m(2m − 1)

∣∣∣∣nm
∣∣∣∣ = m(m+ 1)

∣∣∣∣ n

m+ 1

∣∣∣∣+ 2n(2n − 1)

∣∣∣∣n− 1

m − 1

∣∣∣∣ ,
and it follows that the

∣∣n
m

∣∣’s are positive. (A similar proof shows that the

related quantity (−1)n(2n + 2)E2n+1(x)/(2x − 1) has positive integer coeffi-

cients, when expressed as an nth degree polynomial in y.) It can be shown

that
∣∣n
1

∣∣ is the Genocchi number (−1)n−1(22n+1 − 2)B2n (see exercise 6.24),

and that
∣∣ n
n−1

∣∣ = (
n
2

)
,
∣∣ n
n−2

∣∣ = 2(n+1
4

)
+ 3

(
n
4

)
, etc.

7.53 It is P(1+V4n+1+V4n+3)/6. Thus, for example, T20 = P12 = 210; T285 =

P165 = 40755.

7.54 Let Ek be the operation on power series that sets all coefficients to zero

except those of zn where n modm = k. The stated construction is equivalent

to the operation

E0 SE0 S (E0 + E1)S . . . S (E0 + E1 + · · ·+ Em−1)

applied to 1/(1 − z), where S means “multiply by 1/(1 − z).” There are m!

terms

E0 SEk1
SEk2

S . . . S Ekm

where 0 ≤ kj < j, and every such term evaluates to zrm/(1 − zm)m+1 if r is

the number of places where kj < kj+1. Exactly
〈
m
r

〉
terms have a given value

of r, so the coefficient of zmn is
∑m−1

r=0

〈
m
r

〉(
n+m−r

m

)
= (n + 1)m by (6.37).

(The fact that operation Ek can be expressed with complex roots of unity

seems to be of no help in this problem.)

7.55 Suppose that P0(z)F(z) + · · · + Pm(z)F(m)(z) = Q0(z)G(z) + · · · +
Qn(z)G

(n)(z) = 0, where Pm(z) andQn(z) are nonzero. (a) Let H(z) = F(z)+

G(z). Then there are rational functions Rk,l(z) for 0 ≤ l < m + n such that

H(k)(z) = Rk,0(z)F
(0)(z)+ · · ·+Rk,m−1(z)F

(m−1)(z)+Rk,m(z)G(0)(z)+ · · ·+
Rk,m+n−1(z)G

(n−1)(z). The m + n + 1 vectors
(
Rk,0(z), . . . , Rk,m+n−1(z)

)
are linearly dependent in the (m + n)-dimensional vector space whose com-

ponents are rational functions; hence there are rational functions Sl(z), not
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8.37 The number of coin-toss sequences of length n is Fn−1, for all n > 0,

because of the relation between domino tilings and coin flips. Therefore the

probability that exactly n tosses are needed is Fn−1/2
n, when the coin is fair.

Also qn = Fn+1/2
n−1, since

∑
k≥n Fkz

k = (Fnz
n + Fn−1z

n+1)/(1 − z − z2).

(A systematic solution via generating functions is, of course, also possible.)

8.38 When k faces have been seen, the task of rolling a new one is equivalent

to flipping coins with success probability pk = (m − k)/m. Hence the pgf is∏l−1
k=0 pkz/(1 − qkz) =

∏l−1
k=0(m − k)z/(m − kz). The mean is

∑l−1
k=0 p

−1
k =

m(Hm − Hm−l); the variance is m2
(
H

(2)
m − H

(2)
m−l

)
− m(Hm − Hm−l); and

equation (7.47) provides a closed form for the requested probability, namely

m−nm!
{
n−1
l−1

}
/(m− l)!. (The problem discussed in this exercise is tradition-

ally called “coupon collecting.”)

8.39 E(X) = P(−1); V(X) = P(−2) − P(−1)2; E(lnX) = −P ′(0).

8.40 (a) We have κm = n
(
0!
{
m
1

}
p − 1!

{
m
2

}
p2 + 2!

{
m
3

}
p3 − · · · ), by (7.49).

Incidentally, the third cumulant is npq(q−p) and the fourth is npq(1−6pq).

The identity q+pet = (p+qe−t)et shows that fm(p) = (−1)mfm(q)+[m= 1];

hence we can write fm(p) = gm(pq)(q−p)[m odd], where gm is a polynomial

of degree �m/2�, whenever m > 1. (b) Let p = 1
2
and F(t) = ln(1

2
+ 1

2
et).

Then
∑

m≥1 κmt
m−1/(m−1)! = F ′(t) = 1/(1+e−t), and we can use exercise

6.23.

8.41 If G(z) is the pgf for a random variable X that assumes only positive

integer values, then
∫1

0
G(z)dz/z =

∑
k≥1 Pr(X= k)/k = E(X−1). If X is the

distribution of the number of flips to obtain n + 1 heads, we have G(z) =(
pz/(1− qz)

)n+1
by (8.59), and the integral is

∫1
0

(
pz

1− qz

)n+1
dz

z
=

∫1
0

wn dw

1+ (q/p)w

if we substitute w = pz/(1− qz). When p = q the integrand can be written

(−1)n
(
(1+w)−1−1+w−w2+· · ·+(−1)nwn−1

)
, so the integral is (−1)n

(
ln 2−

1+ 1
2
− 1

3
+· · ·+(−1)n/n

)
. We have H2n−Hn = ln 2− 1

4
n−1+ 1

16
n−2+O(n−4)

by (9.28), and it follows that E(X−1
n+1) =

1
2
n−1 − 1

4
n−2 +O(n−4).

8.42 Let Fn(z) and Gn(z) be pgf’s for the number of employed evenings, if

the man is initially unemployed or employed, respectively. Let qh = 1 − ph
and qf = 1− pf. Then F0(z) = G0(z) = 1, and

Fn(z) = phzGn−1(z) + qhFn−1(z) ;

Gn(z) = pfFn−1(z) + qfzGn−1(z) .
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9.3 Replacing kn by O(n) requires a different C for each k; but each O

stands for a single C. In fact, the context of this O requires it to stand for

a set of functions of two variables k and n. It would be correct to write∑n
k=1 kn =

∑n
k=1O(n

2) = O(n3).

9.4 For example, limn→∞O(1/n) = 0. On the left, O(1/n) is the set of all

functions f(n) such that there are constants C and n0 with
∣∣f(n)∣∣ ≤ C/n for

all n ≥ n0. The limit of all functions in that set is 0, so the left-hand side is

the singleton set {0}. On the right, there are no variables; 0 represents {0}, the

(singleton) set of all “functions of no variables, whose value is zero.” (Can you

see the inherent logic here? If not, come back to it next year; you probably

can still manipulate O-notation even if you can’t shape your intuitions into

rigorous formalisms.)

9.5 Let f(n) = n2 and g(n) = 1; then n is in the left set but not in the

right, so the statement is false.

9.6 n lnn + γn+O(
√
n lnn).

9.7 (1 − e−1/n)−1 = nB0 + B1 + B2n
−1/2! + · · · = n + 1

2
+O(n−1).

9.8 For example, let f(n) = �n/2�!2 + n, g(n) = (�n/2	 − 1)! �n/2	! + n.
These functions, incidentally, satisfy f(n) = O

(
ng(n)

)
and g(n) = O

(
nf(n)

)
;

more extreme examples are clearly possible.

9.9 (For completeness, we assume that there is a side condition n → ∞,

so that two constants are implied by each O.) Every function on the left has

the form a(n) + b(n), where there exist constants m0, B, n0, C such that∣∣a(n)∣∣ ≤ B∣∣f(n)∣∣ for n ≥ m0 and
∣∣b(n)∣∣ ≤ C∣∣g(n)∣∣ for n ≥ n0. Therefore the

left-hand function is at most max(B,C)
(∣∣f(n)∣∣+∣∣g(n)∣∣), for n ≥ max(m0, n0),

so it is a member of the right side.

9.10 If g(x) belongs to the left, so that g(x) = cosy for some y, where

|y| ≤ C|x| for some C, then 0 ≤ 1− g(x) = 2 sin2(y/2) ≤ 1
2
y2 ≤ 1

2
C2x2; hence

the set on the left is contained in the set on the right, and the formula is true.

9.11 The proposition is true. For if, say, |x| ≤ |y|, we have (x + y)2 ≤ 4y2.

Thus (x+y)2 = O(x2)+O(y2). Thus O(x+y)2 = O
(
(x+y)2

)
= O

(
O(x2)+

O(y2)
)
= O

(
O(x2)

)
+O

(
O(y2)

)
= O(x2) +O(y2).

9.12 1 + 2/n +O(n−2) = (1 + 2/n)
(
1 +O(n−2)/(1 + 2/n)

)
by (9.26), and

1/(1 + 2/n) = O(1); now use (9.26).

9.13 nn
(
1 + 2n−1 + O(n−2)

)n
= nn exp

(
n
(
2n−1 + O(n−2)

))
= e2nn +

O(nn−1).

9.14 It is nn+β exp
(
(n + β)

(
α/n− 1

2
α2/n2 +O(n−3)

))
.
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9.15 ln
(

3n
n,n,n

)
= 3n ln 3− lnn+ 1

2
ln 3− ln 2π+

(
1
36

− 1
4

)
n−1 +O(n−3), so(It’s interesting

to compare this
formula with the
corresponding re-
sult for the middle
binomial coefficient,
exercise 9.60.)

the answer is

33n+1/2

2πn

(
1− 2

9
n−1 + 2

81
n−2 +O(n−3)

)
.

9.16 If l is any integer in the range a ≤ l < b we have∫1

0

B(x)f(l+ x)dx =

∫1
1/2

B(x)f(l+ x)dx−

∫1/2
0

B(1 − x)f(l+ x)dx

=

∫1
1/2

B(x)
(
f(l+ x) − f(l+ 1− x)

)
dx .

Since l + x ≥ l + 1 − x when x ≥ 1
2
, this integral is positive when f(x) is

nondecreasing.

9.17
∑

m≥0 Bm(1
2
)zm/m! = zez/2/(ez − 1) = z/(1− e−z/2) − z/(1− e−z).

9.18 The text’s derivation for the case α = 1 generalizes to give

bk(n) =
2(2n+1/2)α

(2πn)α/2
e−k2α/n , ck(n) = 22nα n−(1+α)/2+3εe−k2α/n ;

the answer is 22nα(πn)(1−α)/2α−1/2
(
1+O(n−1/2+3ε)

)
.

9.19 H10 = 2.928968254− ≈ 2.928968258; 10! = 3628800 ≈ 3628800.05;

B10 = 0.0757575 . . . ≈ 0.07575749; π(10) = 4 ≈ 10.002; e0.1 = 1.1051709+ ≈
1.1051708; ln 1.1 = 0.095310+ ≈ 0.095308; 1.1111111 . . . ≈ 1.1111; 1.10.1 =

1.0095765+ ≈ 1.0095764. (The approximation to π(n) gives more significant

figures when n is larger; for example, π(109) = 50847534 ≈ 50840742.)
9.20 (a) Yes; the left side is o(n) while the right side is equivalent to O(n).

(b) Yes; the left side is e · eO(1/n). (c) No; the left side is about
√
n times the

bound on the right.

9.21 We have Pn = p = n
(
lnp− 1− 1/lnp +O(1/logn)2

)
, where

lnp = lnn + ln lnp− 1/lnn + ln lnn/(lnn)2 +O(1/logn)2 ;

ln lnp = ln lnn +
ln lnn

lnn
−

(ln lnn)2

2(lnn)2
+

ln lnn

(lnn)2
+O(1/logn)2 .

It follows that

Pn = n

(
lnn+ ln lnn− 1

+
ln lnn − 2

lnn
−

(ln lnn)2/2− 3 ln lnn

(lnn)2
+O(1/logn)2

)
.
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(A slightly better approximation replaces this O(1/logn)2 by the quantity What does a drown-
ing analytic number
theorist say?

log log log log . . .

−5.5/(lnn)2+O(log logn/logn)3; then we estimate P1000000 ≈ 15480992.8.)
9.22 Replace O(n−2k) by − 1

12
n−2k + O(n−4k) in the expansion of Hnk ;

this replaces O
(
Σ3(n

2)
)
by − 1

12
Σ3(n

2) +O
(
Σ3(n

4)
)
in (9.53). We have

Σ3(n) = 3
4
n−1 + 5

36
n−2 +O(n−3) ,

hence the term O(n−2) in (9.54) can be replaced by − 19
144
n−2 +O(n−3).

9.23 nhn =
∑

0≤k<n hk/(n−k)+2cHn/(n+1)(n+2). Choose c = e
π2/6 =∑

k≥0 gk so that
∑

k≥0 hk = 0 and hn = O(logn)/n3. The expansion of∑
0≤k<n hk/(n − k) as in (9.60) now yields nhn = 2cHn/(n + 1)(n + 2) +

O(n−2), hence

gn = eπ
2/6

(
n+ 2 lnn+O(1)

n3

)
.

9.24 (a) If
∑

k≥0

∣∣f(k)∣∣ < ∞ and if f(n − k) = O
(
f(n)

)
when 0 ≤ k ≤ n/2,

we have

n∑
k=0

akbn−k =

n/2∑
k=0

O
(
f(k)

)
O
(
f(n)

)
+

n∑
k=n/2

O
(
f(n)

)
O
(
f(n − k)

)
,

which is 2O
(
f(n)

∑
k≥0

∣∣f(k)∣∣), so this case is proved. (b) But in this case if

an = bn = α−n, the convolution (n + 1)α−n is not O(α−n).

9.25 Sn
/(

3n
n

)
=

∑n
k=0 n

k/(2n+ 1)k. We may restrict the range of summa-

tion to 0 ≤ k ≤ (logn)2, say. In this range nk = nk
(
1 −

(
k
2

)
/n +O(k4/n2)

)
and (2n + 1)k = (2n)k

(
1+

(
k+1
2

)
/2n +O(k4/n2)

)
, so the summand is

1

2k

(
1−

3k2 − k

4n
+O

( k4
n2

))
.

Hence the sum over k is 2−4/n+O(1/n2). Stirling’s approximation can now

be applied to
(
3n
n

)
= (3n)!/(2n)!n!, proving (9.2).

9.26 The minimum occurs at a term |B2m|/
(
(2m)(2m − 1)n2m−1

)
where

2m ≈ 2πn + 3
2
, and this term is approximately equal to 1/(πe2πn

√
n ). The

absolute error in lnn! is therefore too large to determine n! exactly by round-

ing to an integer, when n is greater than about e2π+1.

9.27 We may assume that α 
= −1. Let f(x) = xα; the answer is

n∑
k=1

kα = Cα +
nα+1

α+ 1
+

2m∑
k=1

Bk

k

(
α

k − 1

)
nα−k+1 +O(nα−2m−1) .
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(The constant Cα turns out to be ζ(−α), which is in fact defined by thisIn particular,
ζ(−n) =
−Bn+1/(n+1)
for integer n ≥ 0 .

formula when α > −1.)

9.28 In general, suppose f(x) = xα lnx in Euler’s summation formula, when

α 
= −1. Proceeding as in the previous exercise, we find

n∑
k=1

kα lnk = C ′α +
nα+1 lnn

α+ 1
−

nα+1

(α + 1)2

+

2m∑
k=1

Bk

k

(
α

k − 1

)
nα−k+1(lnn +Hα −Hα−k+1)

+O(nα−2m−1 logn) ;

the constant C ′α can be shown [74, §3.7] to be −ζ ′(−α). (The logn factor

in the O term can be removed when α is a positive integer ≤ 2m; in that

case we also replace the kth term of the right sum by Bkα! (k− 2− α)!×
(−1)αnα−k+1/k! when α < k− 1.) To solve the stated problem, we let α = 1

and m = 1, taking the exponential of both sides to get

Qn = A · nn2/2+n/2+1/12e−n2/4
(
1+O(n−2)

)
,

where A = e1/12−ζ ′(−1) ≈ 1.2824271291 is “Glaisher’s constant.”

9.29 Let f(x) = x−1 lnx. A slight modification of the calculation in the

previous exercise gives

n∑
k=1

lnk

k
=

(lnn)2

2
+ γ1

+

2m∑
k=1

Bk

k
(−1)k−1n−k(lnn−Hk−1) +O(n

−2m−2 logn) ,

where γ1 ≈ −0.07281584548367672486 is a “Stieltjes constant” (see the an-

swer to 9.57). Taking exponentials gives

eγ1

√
n lnn

(
1+

lnn

2n
+O

( logn
n

)2
)
.

9.30 Let g(x) = xle−x2

and f(x) = g(x/
√
n ). Then n−l/2

∑
k>0 k

le−k2/n

is ∫
∞

0

f(x)dx −

m∑
k=1

Bk

k!
f(k−1)(0) − (−1)m

∫
∞

0

Bm

(
{x}

)
m!

f(m)(x)dx

= n1/2

∫
∞

0

g(x)dx−

m∑
k=1

Bk

k!
n(k−1)/2g(k−1)(0) +O(n−m/2) .
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Since g(x) = xl − x2+l/1! + x4+l/2! − x6+l/3! + · · · , the derivatives g(m)(x)

obey a simple pattern, and the answer is

1

2
n(l+1)/2 Γ

(l+ 1
2

)
−

Bl+1

(l+ 1)! 0!
+
Bl+3n

−1

(l+ 3)! 1!
−
Bl+5n

−2

(l+ 5)! 2!
+O(n−3) .

9.31 The somewhat surprising identity 1/(cm−k + cm) + 1/(cm+k + cm) =

1/cm makes the terms for 0 ≤ k ≤ 2m sum to (m + 1
2
)/cm. The remaining

terms are

∑
k≥1

1

c2m+k + cm
=

∑
k≥1

(
1

c2m+k
−

1

c3m+2k
+

1

c4m+3k
− · · ·

)

=
1

c2m+1 − c2m
−

1

c3m+2 − c3m
+ · · · ,

and this series can be truncated at any desired point, with an error not ex-

ceeding the first omitted term.

9.32 H
(2)
n = π2/6 − 1/n +O(n−2) by Euler’s summation formula, since we

know the constant; and Hn is given by (9.89). So the answer is The world’s top
three constants,
(e, π, γ) , all appear
in this answer.neγ+π2/6

(
1− 1

2
n−1 +O(n−2)

)
.

9.33 We have nk/nk = 1 − k(k − 1)n−1 + 1
2
k2(k − 1)2n−2 + O(k6n−3);

dividing by k! and summing over k ≥ 0 yields e− en−1 + 7
2
en−2 +O(n−3).

9.34 A = eγ; B = 0; C = −1
2
eγ; D = 1

2
eγ(1−γ); E = 1

8
eγ; F = 1

12
eγ(3γ+1).

9.35 Since 1/k
(
lnk + O(1)

)
= 1/k lnk + O

(
1/k(log k)2

)
, the given sum

is
∑n

k=2 1/k ln k + O(1). The remaining sum is ln lnn + O(1) by Euler’s

summation formula.

9.36 This works out beautifully with Euler’s summation formula:

Sn =

∫n
0

dx

n2 + x2
+
B1

1!

1

n2 + x2

∣∣∣∣
n

0

+
B2

2!

−2x

(n2 + x2)2

∣∣∣∣
n

0

+ R2 ,

where we have R2 = R3 and R3 = O(n3−8).

Hence Sn = 1
4
πn−1 − 1

4
n−2 − 1

24
n−3 +O(n−5).

9.37 This is∑
k,q≥1

(n − qk)
[
n/(q+ 1)<k≤n/q

]
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9.63 Let c = φ2−φ. The estimate cnφ−1+o(nφ−1) was proved by Fine [150].

Ilan Vardi observes that the sharper estimate stated can be deduced from

the fact that the error term e(n) = f(n) − cnφ−1 satisfies the approximate

recurrence cφn2−φe(n) ≈ −
∑

k e(k)[1≤ k<cn
φ−1 ]. The function

nφ−1u(ln lnn/lnφ)

lnn

satisfies this recurrence asymptotically, if u(x + 1) = −u(x). (Vardi conjec-Additional progress
on this problem has
been made by Jean-
Luc Rémy, Journal
of Number Theory,
vol. 66 (1997), 1–28.

tures that

f(n) = nφ−1

(
c+ u

( ln lnn
lnφ

)
(lnn)−1 +O

(
(logn)−2

))

for some such function u.) Calculations for small n show that f(n) equals the

nearest integer to cnφ−1 for 1 ≤ n ≤ 400 except in one case: f(273) = 39 >

c · 273φ−1 ≈ 38.4997. But the small errors are eventually magnified, because

of results like those in exercise 2.36. For example, e(201636503) ≈ 35.73;

e(919986484788) ≈ −1959.07.

9.64 (From this identity for B2(x) we can easily derive the identity of exer-

cise 58 by induction on m.) If 0 < x < 1, the integral
∫1/2
x

sinNπtdt/sinπt

can be expressed as a sum of N integrals that are each O(N−2), so it is

O(N−1); the constant implied by this O may depend on x. Integrating

N∑
n=1

cos 2nπt = �
(
e2πit e

2Nπit − 1

e2πit − 1

)
= −

1

2
+
1

2

sin(2N + 1)πt

sinπt

and letting N → ∞ now gives
∑

n≥1(sin 2nπx)/n = π
2
− πx, a relation that

Euler knew ([107] and [110, part 2, §92]). Integrating again yields the desired

formula. (This solution was suggested by E.M.E. Wermuth [367]; Euler’s

original derivation did not meet modern standards of rigor.)

9.65 Since a0 + a1n
−1 + a2n

−2 + · · · = 1 + (n − 1)−1(a0 + a1(n − 1)−1 +

a2(n − 1)−2 + · · · ), we obtain the recurrence am+1 =
∑

k

(
m
k

)
ak, which

matches the recurrence for the Bell numbers. Hence am = �m.

A slightly longer but more informative proof can be based on the fact

that 1/
(
(n − 1) . . . (n −m)

)
=

∑
k

{
k
m

}
/nk, by (7.47).

9.66 The expected number of distinct elements in the sequence 1, f(1),“The paradox is now
fully established
that the utmost
abstractions are the
true weapons with
which to control
our thought of
concrete fact.”

—A.N. White-
head [372]

f(f(1)), . . . , when f is a random mapping of {1, 2, . . . , n} into itself, is the

functionQ(n) of exercise 56, whose value is 1
2

√
2πn+O(1); this might account

somehow for the factor
√
2πn.

9.67 It is known that lnχn ∼ 3
2
n2 ln 4

3
; the constant e−π/6 has been verified

empirically to eight significant digits.

9.68 This would fail if, for example, en−γ = m+ 1
2
+ε/m for some integerm

and some 0 < ε < 1
8
; but no counterexamples are known.
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