$p_k \in [0 \mathinner{..} k]$	0 0 0 0 0 0	0 0 0 0 0 0 1	0 0 0 0 0 2	0 0 0 0 0 2	0 0 0 0 3 1	0 0 0 0 3 1	0 0 0 4 2 0	0 0 0 4 2 0	0 0 0 4 2 2	0 0 0 4 2 2	0 0 5 3 1 1	0 0 5 3 1 1	0 6 4 2 0 0	0 6 4 2 0 0	0 6 4 2 0 2	0 6 4 2 0 2	0 6 4 2 3 1	0 6 4 2 3 1	7 5 3 1 2 0	7 5 3 1 2 0	7 5 3 1 2 2	7 5 3 1 2 2	6 4 2 0 1 1	6 4 2 0 1 1	6 4 2 4 0 0	p_7 p_6 p_5 p_4 p_3	$p_k = \text{pebbles in pit } k$
	0	_	2	ယ	4	ပၢ	6	7	œ	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		n pebbles
$p_k \le k m_k$	0 0 0 0 0 0	0 0 0 0 0 0 0 1	0 0 0 0 0 1	0 0 0 0 0 1	0 0 0 0 1 1	0 0 0 0 1 1	0 0 0 1 1 1	0 0 0 1 1 1	0 0 0 1 1 2	0 0 0 1 1 2	0 0 1 1 1 2	0 0 1 1 1 2	0 1 1 1 1 2	0 1 1 1 1 2	0 1 1 1 1 3	0 1 1 1 1 3	0 1 1 1 2 3	0 1 1 1 2 3	1 1 1 1 2 3	1 1 1 1 2 3	1 1 1 1 2 4	1 1 1 1 2 4	1 1 1 1 2 4	1 1 1 1 2 4	1 1 1 2 2 4	$m_7 m_6 m_5 m_4 m_3 m_2$	$m_k = \text{times pit } k \text{ is emptied}$

$q_k + p_k = q_{k-1}$	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 2	0 0 0 0 0 0 2 3	0 0 0 0 3 4	0 0 0 0 3 4	0 0 0 4 6 6	0 0 0 4 6 6	0 0 0 4 6 8	0 0 0 4 6 8	0 0 5 8 9 10	0 0 5 8 9 10	0 6 10 12 12 12	0 6 10 12 12 12	0 6 10 12 12 14	0 6 10 12 12 14	0 6 10 12 15 16	0 6 10 12 15 16	7 12 15 16 18 18	7 12 15 16 18 18	7 12 15 16 18 20	7 12 15 16 18 20	14 18 20 20 21 22	14 18 20 20 21 22	14 18 20 24 24 24	q_6 q_5 q_4 q_3 q_2 q_1	$q_k = p_{k+1} + p_{k+2} + \cdots$
$p_k \in [0 \mathinner{..} k]$	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 2	0 0 0 0 0 0 2 1	0 0 0 0 3 1	0 0 0 0 3 1	0 0 0 4 2 0	0 0 0 4 2 0	0 0 0 4 2 2	0 0 0 4 2 2	0 0 5 3 1 1	0 0 5 3 1 1	0 6 4 2 0 0	0 6 4 2 0 0	0 6 4 2 0 2	0 6 4 2 0 2	0 6 4 2 3 1	0 6 4 2 3 1	7 5 3 1 2 0	7 5 3 1 2 0	7 5 3 1 2 2	7 5 3 1 2 2	6 4 2 0 1 1	6 4 2 0 1 1	6 4 2 4 0 0	p_7 p_6 p_5 p_4 p_3 p_2	$p_k = \text{pebbles in pit } k$
$l_k + m_k = l_{k-1}$ $l_k + p_k = km_k$	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 1	0 0 0 0 0 0 1 3	0 0 0 0 1 2	0 0 0 0 1 2	0 0 0 1 2 3	0 0 0 1 2 3	0 0 0 1 2 4	0 0 0 1 2 4	0 0 1 2 3 5	0 0 1 2 3 5	0 1 2 3 4 6	0 1 2 3 4 6	0 1 2 3 4 7	0 1 2 3 4 7	0 1 2 3 5 8	0 1 2 3 5 8	1 2 3 4 6 9	1 2 3 4 6 9	1 2 3 4 6 10	1 2 3 4 6 10	2 3 4 5 7 11	2 3 4 5 7 11	2 3 4 6 8 12	$l_6 l_5 l_4 l_3 l_2 l_1$	$l_k = m_{k+1} + m_{k+2} + \cdots$
	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 1	0 0 0 0 0 0 1 2	0 0 0 0 1 1	0 0 0 0 1 1	0 0 0 1 1 1	0 0 0 1 1 1	0 0 0 1 1 2	0 0 0 1 1 2	0 0 1 1 1 2	0 0 1 1 1 2	0 1 1 1 1 2	0 1 1 1 1 2	0 1 1 1 1 3	0 1 1 1 1 3	0 1 1 1 2 3	0 1 1 1 2 3	1 1 1 1 2 3	1 1 1 1 2 3	1 1 1 1 2 4	1 1 1 1 2 4	1 1 1 1 2 4	1 1 1 1 2 4	1 1 1 2 2 4	$m_7 m_6 m_5 m_4 m_3$	$m_k = \text{times pit } k \text{ is emptied}$

$q_k + p_k = q_{k-1}$ $q_k = (k+1)l_k$			0 0 0	0 0 0 4 6 6	0 0 0 4 6 6	0 0 0 4 6 8	0 0 0 4 6 8	0 0 5 8 9 10	0 0 5 8 9 10	0 6 10 12 12 12	0 6 10 12 12 12	0 6 10 12 12 14	0 6 10 12 12 14	0 6 10 12 15 16	0 6 10 12 15 16	7 12 15 16 18 18	7 12 15 16 18 18	7 12 15 16 18 20	7 12 15 16 18 20	14 18 20 20 21 22	14 18 20 20 21 22		q_7 q_6 q_5 q_4 q_3 q_2 q_1 q_0	$q_k = p_{k+1} + p_{k+2} + \cdots$
$p_k \in [0 \dots k]$ $p_k = q_{k-1} \bmod (k+1)$			0	0 0 0 4 2 0	0 0 0 4 2 0	0 0 0 4 2 2	0 0 0 4 2 2	0 0 5 3 1 1	0 0 5 3 1 1	0 6 4 2 0 0	0 6 4 2 0 0	0 6 4 2 0 2	0 6 4 2 0 2	0 6 4 2 3 1	0 6 4 2 3 1	7 5 3 1 2 0	7 5 3 1 2 0	7 5 3 1 2 2	7 5 3 1 2 2	6 4 2 0 1 1	6 4 2 0 1 1	6 4 2 4 0 0	p_7 p_6 p_5	$p_k = \text{pebbles in pit } k$
$l_k + m_k = l_{k-1}$ $l_k + p_k = k m_k$	0 0 0 0 0		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 1 2 3	0 0 0 1 2 3	0 0 0 1 2 4	0 0 0 1 2 4	0 0 1 2 3 5	0 0 1 2 3 5	0 1 2 3 4 6	0 1 2 3 4 6	0 1 2 3 4 7	0 1 2 3 4 7	0 1 2 3 5 8	0 1 2 3 5 8	1 2 3 4 6 9	1 2 3 4 6 9	1 2 3 4 6 10	1 2 3 4 6 10	2 3 4 5 7 11	2 3 4 5 7 11	2 3 4 6 8 12	l_1	$l_k = m_{k+1} + m_{k+2} + \cdots$
$p_1-p_k=(k+2)n$	0 0		0 0 0 0 1	0 0 0 1 1	0 0 0 1 1	0 0 0 1 1	0 0 0 1 1	0 0 1 1	0 0 1 1 1	0 1 1 1 1	0 1 1 1 1	0 1 1 1 1	0 1 1 1 1	0 1 1 1 2	0 1 1 1 2	1 1 1 1 2	1 1 1 1 2	1 1 1 1 2	1 1 1 1 2	1 1 1 1 2	1 1 1 1 2	1 1 1 2 2	m_8 m_7 m_6 m_5 m_4 m_3 m_2	$m_k = \text{times pit } k \text{ is emptied}$

$q_k + p_k = q_{k-1}$ $q_k = (k+1)l_k$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 2	0 0 0 0 3 4	0 0 0 0 3 4	0 0 0 4 6 6	0 0 0 4 6 6	0 0 0 4 6 8	0 0 0 4 6 8	0 0 5 8 9 10	0 0 5 8 9 10	0 6 10 12 12 12	0 6 10 12 12 12	0 6 10 12 12 14	0 6 10 12 12 14	0 6 10 12 15 16	0 6 10 12 15 16	7 12 15 16 18 18	7 12 15 16 18 18	7 12 15 16 18 20	7 12 15 16 18 20	14 18	14	14 18	q_7 q_6 q_5 q_4 q_3 q_2 q_1 q_0	$q_k = p_{k+1} + p_{k+2} + \cdots$
$p_k \in [0 \dots k]$ $p_k = q_{k-1} \bmod (k+1)$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 2	0 0 0 0 3 1	0 0 0 0 3 1	0 0 0 4 2 0	0 0 0 4 2 0	0 0 0 4 2 2	0 0 0 4 2 2	0 0 5 3 1 1	0 0 5 3 1 1	0 6 4 2 0 0	0 6 4 2 0 0	0 6 4 2 0 2	0 6 4 2 0 2	0 6 4 2 3 1	0 6 4 2 3 1	7 5 3 1 2 0	7 5 3 1 2 0	7 5 3 1 2 2	7 5 3 1 2 2	6 4 2 0 1 1	6 4 2 0 1 1	6 4 2 4 0 0	p_7 p_6 p_5 p_4 p_3 p_2 p_4	$p_k = \text{pebbles in pit } k$
$l_k + m_k = l_{k-1}$ $l_k + p_k = km_k$ $l_k = \lfloor \frac{k}{k+1} l_{k-1} \rfloor$			0 0 0 0 0 1	0 0 0 0 1 2	0 0 0 0 1 2	0 0 0 1 2 3	0 0 0 1 2 3	0 0 0 1 2 4	0 0 0 1 2 4	0 0 1 2 3 5	0 0 1 2 3 5	0 1 2 3 4 6	0 1 2 3 4 6	0 1 2 3 4 7	0 1 2 3 4 7	0 1 2 3 5 8	0 1 2 3 5 8	1 2 3 4 6 9	1 2 3 4 6 9	1 2 3 4 6 10	1 2 3 4 6 10	2 3 4 5 7 11	2 3 4 5 7 11	2 3 4 6 8 12	l_5 l_4 l_3 l_2 l_1	$l_k = m_{k+1} + m_{k+2} + \cdots$
$-1 - p_k = (k+2)m_{k+1} - k$ $m_k = \lceil l_{k-1}/(k+1) \rceil$	0 0 0 0 0 0 0 0 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 1	0 0 0 0 1 1	0 0 0 0 1 1	0 0 0 1 1 1	0 0 0 1 1 1	0 0 0 1 1 2	0 0 0 1 1 2	0 0 1 1 1 2	0 0 1 1 1 2	0 1 1 1 1 2	0 1 1 1 1 2	0 1 1 1 1 3	0 1 1 1 1 3	0 1 1 1 2 3	0 1 1 1 2 3	1 1 1 1 2 3	1 1 1 1 2 3	1 1 1 1 2 4	1 1 1 1 2 4	1 1 1 1 2 4	1 1 1 1 2 4	1 1 1 2 2 4	$m_7 \ m_6 \ m_5 \ m_4 \ m_3$	$m_k = \text{times pit } k \text{ is emptied}$

Key facts:

$$l_0 = n$$

$$l_k = \lfloor \frac{k}{k+1} l_{k-1} \rfloor$$

$$q_k = (k+1)l_k$$

$$p_k = q_{k-1} \mod (k+1)$$

 $l_{10} = [$ $l_{11} = [$ $l_{12} = [$ $l_{13} = [$ $l_0 = 83; q_0 = 83; p_1 =$ $p_{16}p_{15}\dots$ Example, n = $\begin{vmatrix}
1 & -\frac{1}{3} \cdot 83 = 41; q_1 = 2 \cdot 41 = 82; p_2 = q_1 \mod 3 = 1. \\
2 & -\frac{1}{3} \cdot 41 = 27; q_2 = 3 \cdot 27 = 81; p_3 = q_2 \mod 4 = 1. \\
3 & -\frac{1}{3} \cdot 27 = 20; q_3 = 4 \cdot 20 = 80; p_4 = q_3 \mod 5 = 0. \\
4 & -\frac{1}{3} \cdot 20 = 16; q_4 = 5 \cdot 16 = 80; p_5 = q_4 \mod 6 = 2. \\
4 & -\frac{1}{3} \cdot 16 = 13; q_5 = 6 \cdot 13 = 78; p_6 = q_5 \mod 7 = 1. \\
4 & -\frac{1}{3} \cdot 11 = 11; q_6 = 7 \cdot 11 = 77; p_7 = q_6 \mod 8 = 5. \\
4 & -\frac{1}{3} \cdot 11 = 9; q_7 = 8 \cdot 9 = 72; p_8 = q_7 \mod 9 = 0. \\
4 & -\frac{1}{3} \cdot 9 = 8; q_8 = 9 \cdot 8 = 72; p_9 = q_8 \mod 10 = 2.$ $[\cdot 8] = 7; q_9 = 10 \cdot 7 = 70; p_{10} = q_9 \mod 11 = 4.$ [-7] = 6; $q_{10} = 11 \cdot 6 = 66$; $p_{11} = q_{10} \mod 12 = 6$. [-6] = 5; $q_{11} = 12 \cdot 5 = 60$; $p_{12} = q_{11} \mod 13 = 8$. p_{1} П $|=2; q_{14} = 15 \cdot 2 = 30; p_{15} = q_{14} \mod 16 = 14.$ $|=1; q_{15} = 16 \cdot 1 = 16; p_{16} = q_{15} \mod 17 = 16.$ $|=3; q_{13}=14\cdot 3=42; p_{14}=q_{13} \mod 15=12.$ = 4; $q_{12} = 13 \cdot 4 = 52$; $p_{13} = q_{12} \mod 14 = 10$. $16\ 14\ 12\ 10\ 8\ 6\ 4\ 2\ 0\ 5\ 1\ 2\ 0\ 1\ 1\ 1.$ 1; $q_{15} = 16 \cdot 1 = 16$; $p_{16} = q_{15} \mod 17 =$ $q_0 \bmod 2$ 5. 1.

Example, n = 84: $l_0 = 84$; $q_0 = 84$; $p_1 = q_0 \mod 2 = 0$. $l_1 = \lfloor \frac{1}{5} \cdot 84 \rfloor = 42$; $q_1 = 2 \cdot 42 = 84$; $p_2 = q_1 \mod 3 = 0$. $l_2 = \lfloor \frac{3}{2} \cdot 42 \rfloor = 28$; $q_2 = 3 \cdot 28 = 84$; $p_3 = q_2 \mod 4 = 0$. $l_3 = \lfloor \frac{3}{4} \cdot 28 \rfloor = 21$; $q_3 = 4 \cdot 21 = 84$; $p_4 = q_3 \mod 5 = 4$. $l_4 = \lfloor \frac{5}{5} \cdot 16 \rfloor = 13$; $q_5 = 6 \cdot 13 = 78$; $p_6 = q_5 \mod 7 = 1$. $l_6 = \lfloor \frac{5}{6} \cdot 13 \rfloor = 11$; $q_6 = 7 \cdot 11 = 77$; $p_7 = q_6 \mod 8 = 5$. $l_7 = \lfloor \frac{7}{5} \cdot 11 \rfloor = 9$; $q_7 = 8 \cdot 9 = 72$; $p_8 = q_7 \mod 9 = 0$. $l_8 = \lfloor \frac{5}{9} \cdot 9 \rfloor = 8$; $q_8 = 9 \cdot 8 = 72$; $p_9 = q_8 \mod 10 = 2$. $l_9 = \lfloor \frac{10}{10} \cdot 7 \rfloor = 6$; $q_{10} = 11 \cdot 6 = 66$; $p_{11} = q_{10} \mod 12 = 6$. $l_{11} = \lfloor \frac{11}{12} \cdot 6 \rfloor = 5$; $q_{11} = 12 \cdot 5 = 60$; $p_{12} = q_{11} \mod 13 = 8$. $l_{12} = \lfloor \frac{11}{12} \cdot 5 \rfloor = 4$; $q_{12} = 13 \cdot 4 = 52$; $p_{13} = q_{12} \mod 14 = 10$. $l_{13} = \lfloor \frac{11}{14} \cdot 3 \rfloor = 2$; $q_{14} = 15 \cdot 2 = 30$; $p_{15} = q_{14} \mod 15 = 12$. $l_{14} = \lfloor \frac{11}{16} \cdot 2 \rfloor = 1$; $q_{15} = 16 \cdot 1 = 16$; $p_{16} = q_{15} \mod 17 = 16$. $p_{16}p_{15} \dots p_1 = 16 \cdot 14 \cdot 12 \cdot 10 \cdot 8 \cdot 6 \cdot 4 \cdot 2 \cdot 0 \cdot 5 \cdot 1 \cdot 2 \cdot 4 \cdot 0 \cdot 0$.

 $\mathbf{q}_n = \text{fewest pebbles that need pit } n.$

$$q_1, q_2, q_3, \ldots = 1, 2, 4, 6, 10, 12, 18, 22, 30, 34, 42, 48, 58, 60, 78, 82, 102, 108, \ldots$$
 (N377, M1009, A2491)

$$\mathbf{q}_n = \left\lceil \frac{2}{1} \left\lceil \frac{3}{2} \left\lceil \frac{4}{3} \cdots \left\lceil \frac{n}{n-1} \right\rceil \cdots \right\rceil \right\rceil \right\rceil \qquad \text{(with } n-1 \text{ ceiling brackets)}.$$

Example for
$$n = 10$$
: $\lceil \frac{10}{9} \rceil = 2$; $\lceil \frac{9}{8} \cdot 2 \rceil = 3$; $\lceil \frac{8}{7} \cdot 3 \rceil = 4$; $\lceil \frac{7}{6} \cdot 4 \rceil = 5$; $\lceil \frac{6}{5} \cdot 5 \rceil = 6$; $\lceil \frac{5}{4} \cdot 6 \rceil = 8$; $\lceil \frac{4}{3} \cdot 8 \rceil = 11$; $\lceil \frac{3}{2} \cdot 11 \rceil = 17$; $\lceil \frac{2}{1} \cdot 17 \rceil = 34$.

$$\mathbf{q}_n = \frac{n^2}{\pi} + O(n^{4/3}).$$
 (Erdős and Jabotinsky, 1958)

For example, $\mathbf{q}_{1000000}=318310503562, \text{and } \lfloor 10000000000000/\pi \rfloor = 318309886183.$

It is a pleasant surprise to see π arise from such a simple game. — NEIL J. A. SLOANE, My favorite integer sequences (1998)

A fairly elementary proof of this asymptotic formula by Broline and Loeb (1995) used the interesting sequence of fractions

$$\phi_m = \frac{1}{4^m} {2m \choose m} = \frac{2m-1}{2m} \frac{2m-3}{2m-2} \dots \frac{1}{2},$$

 $\phi_m = \frac{\phi_0 + \phi_1 + \dots + \phi_{m-1}}{2}$

which satisfy not only $\phi_m = \frac{2m-1}{2m}\phi_{m-1}$ but also

(For example,
$$(1 + \frac{1}{2} + \frac{3}{8} + \frac{5}{16})/8 = \frac{35}{128} = \frac{7}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2}$$
.)

The sieve of Tchoukaillon

1	1	_	_	_	_	_	_	1	1	\vdash
2	2	2	2	2	2	2	2	2	2	2
									સ્ટ	ယ
4	4	4	4	4	4	4	4	4	4	4
									EJ.	౮
6	6	6	6	6	6	6	6	6	6	6
									7	7
								-00	∞	∞
									Ø	
10	10	10	10	10	10	10	10	10	10	
									1/1	
12	12	12	12	12	12	12	12		12	
									1/3	-
									14	
									1/5	
							1/6	16	16	
									1/7	
18	18	18	18	18	18	18	18	18	18	
									1/9	_
									20	
									2/1	
22	22	22	22	22	22	22	22	22	22	
									2/3	-
						2/4	24		24	
									35	
								26	26	
									2/7	-
							2/8	28	28	
									29	
30	30	30	30	30	30	30	30	30	30	
									3/1	
								33	32	
									38	-
34	34	34	34	34	34	34	34	34	34	
									35	
					3 5	36	36	36	36 ;	
									3/7 :	
								ॐ	38 :	
							4		39 4	
							\$0	40	40	40

The Tchoukaillon arrays

$$\mathbf{q}_{q,1}^{(1)} = q+1; \quad \mathbf{q}_{qn+r,j}^{(n+1)} = \begin{cases} \mathbf{q}_{q(n+1)+r,j}^{(n)} & \text{if } j+r < n; \\ \mathbf{q}_{q(n+1)+r+1,j-1}^{(n)}, & \text{if } j+r \leq n; \end{cases} \text{ for } n \geq 1, \, q \geq 0, \, 0 \leq r < q.$$

•••	6	တ	4	ယ	2	_	$\mathbf{q}^{(1)}$
	11 12	9 10	7 8	5 6	34	1 2	$\mathbf{q}^{(2)}$
	$15\ 17\ 18$	$13\ 14\ 16$	$9\ 11\ 12$	7 8 10	3 5 6	1 2 4	q(3)
	$19\ 21\ 23\ 24$	$15\ 17\ 20\ 22$	$13\ 14\ 16\ 18$	7 9 11 12	3 5 8 10	$1\ 2\ 4\ 6$	${f q}^{(4)}$
	$25\ 26\ 28\ 32\ 34$	$19\ 21\ 23\ 24\ 30$	$13\ 15\ 17\ 20\ 22$	7 9 14 16 18	3 5 8 11 12	$1 \ 2 \ 4 \ 6 \ 10$	$\mathbf{q}(5)$
	$27\ 29\ 33\ 35\ 36\ 42$	$19\ 25\ 26\ 28\ 32\ 34$	$13\ 15\ 21\ 23\ 24\ 30$	7 9 14172022	3 5 8 11 16 18	1 2 4 6 10 12	$\mathbf{q}^{(6)}$
	27 31 37 38 40 46 48	19 25 29 33 35 36 42	$13\ 15\ 21\ 26\ 28\ 32\ 34$	7 9 14 17 23 24 30	$3 \ 5 \ 8 \ 11 \ 16 \ 20 \ 22$	1 2 4 6 10 12 18	$4^{(7)}$

The rows and columns of $\mathbf{q}^{(n)}$ are monotonically increasing. Furthermore, we have monotonicity in the "third dimension":

$$\mathbf{q}_{i,j}^{(n)} \leq \mathbf{q}_{i,j}^{(n+1)}, \qquad \text{for all integers } i \geq 0, \, j \geq 0, \, \text{and} \, \, n > j.$$

The first 32 rows and first 32 columns of $\mathbf{q}^{(\infty)}$ (A344009):

1 3 7 19 27 39 49 63 79 91 1133 1147 1181 203 223 223 223 223 349 459 4481 567 613 649 709 709
50 50 50 50 50 50 50 50 50 50
4 8 114 21 29 41 51 65 85 99 121 135 163 163 182 211 229 221 221 221 221 225 231 331 331 331 346 357 467 378 673 673 673 673 673 673 673 673
6 11 17 26 37 45 62 73 105 1127 145 171 187 171 187 171 187 221 227 227 227 233 339 339 339 339 339 559 6645 6645 6645 6691 727 739 899 899 899 899 899 899 899 899 899 8
10 16 23 33 44 55 69 86 101 1125 141 165 1185 2217 231 2231 2231 2231 231 231 231 231 231
12 20 28 38 50 64 75 111 1129 151 1175 193 2249 2249 2249 2249 2249 2249 249 249 2
18 24 35 47 74 93 104 1128 1149 1170 1189 2243 2243 2277 305 337 277 401 445 470 525 555 603 661 685 733 805 823 935
22 32 40 53 68 81 122 134 159 184 1199 230 230 2267 2285 3315 335 427 4427 4427 449 545 583 619 669 7729 7759 813 865 919 919
30 36 52 66 77 95 115 117 117 117 127 127 127 128 335 335 335 335 335 342 442 442 442 442 443 473 375 477 388 388 375 477 388 388 388 388 388 388 388 3
34 46 56 71 100 124 1146 1161 1188 218 218 2242 269 304 337 365 337 365 398 4467 327 365 398 467 579 579 579 579 579 579 579 579 579 57
42 54 70 83 96 117 137 158 186 209 235 265 295 314 364 386 425 440 505 542 542 542 542 542 542 542 54
48 59 76 92 110 126 153 173 194 220 245 273 306 341 369 409 449 449 482 551 565 590 662 689 735 801 829 902 911 911 911 911 911 911 911 91
58 72 119 119 1143 1164 1191 2213 2444 266 297 338 338 338 335 475 561 561 584 681 787 787 825 825 871 938 991 1103 1103
60 80 94 113 136 155 176 205 233 248 290 311 345 381 422 423 453 381 665 665 667 757 629 665 6847 9925 962 11022 11085 1131
78 90 112 130 148 167 201 215 246 284 299 344 405 441 405 517 566 602 644 686 747 789 845 913 944 1010 11071 1121 1125
82 106 116 116 116 1179 206 237 261 293 350 350 383 429 455 493 578 677 724 578 677 724 578 617 724 578 617 724 578 617 724 769 926 926 1025
1102 1114 1138 1156 1178 203 236 257 287 321 347 347 377 424 446 489 573 668 573 668 573 668 573 1015 1015 1082 11145 1184 1184 1184 1184 1183
108 120 144 166 197 208 239 278 296 340 371 404 434 434 633 563 563 563 5844 904 904 903 1113 1113 1113 1149 11245
118 142 162 190 204 238 263 292 329 353 388 428 473 557 557 580 635 680 731 765 820 881 981 1035 11097 11148 1125 11285 11359
132 152 172 200 226 251 280 310 346 376 411 437 488 518 568 605 605 604 609 749 803 846 909 955 11013 1105 1125 1126 1137 1137 1137 1137
150 168 196 216 250 268 300 337 410 431 477 515 560 593 688 741 794 831 891 997 11049 11124 11154 11238 11297 11360 1431 1501
154 180 202 232 260 286 317 352 384 415 495 530 575 615 666 771 773 804 854 914 914 914 1024 11024 11024 11027 11315 11315 11315 11326 11326
174 198 222 256 275 316 348 366 413 448 655 604 655 608 746 6797 851 1061 11135 11190 11250 11389 11448 11389 11448 11521
1192 2112 234 264 294 326 356 400 426 472 512 535 587 640 671 726 677 671 728 883 928 874 1108 11144 11215 1128 1128 1128 11324 11411 1476 1538
210 228 262 288 333 354 417 466 501 527 576 625 625 657 701 800 881 917 701 801 881 1104 11104 11104 11104 11105 11281 11307 11405 11464 11597 11691
214 252 272 312 335 3407 443 476 516 564 597 647 695 743 788 885 885 935 1118 1118 11178 1123 1123 1123 1123 1123 1123 1123 112
240 240 270 298 358 406 430 474 551 551 596 636 684 715 775 830 884 923 923 981 11146 1126 11293 1128 11472 11472 11545 11601 11761
258 276 320 336 412 452 494 526 574 608 653 704 748 791 869 966 1016 1016 1016 1016 11187 11268 11300 11187 11268 11300 11401 1454 1558 1658 1658 1658
274 318 332 378 408 436 479 522 556 606 646 692 744 784 784 785 890 957 11169 1124 11295 11356 11444 11491 11568 11641 11717
282 324 342 390 419 462 497 544 592 621 682 710 764 810 877 908 977 11100 11209 11274 11313 11409 11544 1158 11686 11748 11886
322 334 416 441 491 533 558 614 659 700 760 796 893 976 1004 1007 11133 976 1146 11535 1146 11535 11586 11586 11586 11746 11746 11785 11877 11877
330 370 396 432 478 503 546 690 690 737 770 827 788 1102 11102 11102 11286 11460 11460 11564 11611 11690 11751 11851 11994 2093

The sieve of Flavius Josephus (N1048, M2636, A960)

1	_	_	_	_	_	– –
						2
ಲ	ಲ	ಲ	ಲ	ಲ	ಲ	ဃ ဃ
						4
					Ţ	თ თ
						9
7	7	7	7	7	7	7 7
						$\infty \infty$
				9	9	9
						10 10
					1/1	11 11
						12 1/2
13	13	13	13	13		13 13
						14 1/4
			1/5	15		15 15
						16 1⁄6
						17 17
						18 1/8
19	19	19	19	19		19 19
						20 20
				2/1		21 21
						22 22
						23 23
						24 24
		%	25	25		25 25
						26 26
27	27	27	27	27	•	27 : 27 :
						28 : 28 :
					_	29 3
	0.0	0.0	0.0	0.5		30 3
	¥	31	31	31		31 3
				C.D		32 32 3
				ౌహ		33 33
						34 3 34 3
						35 35
			ىئ	లు		36 37 36 37
			*	7		, ,
ಒ	ಬ	ಬ	ಬ	ಬ		38 38 3
Ó	9	9	9	39		39 4 39 4
						40 40

(The first column of $\mathbf{q}^{(\infty)}$ is easily seen to be the result of this sieve — whose nth term is $(\pi/4)n^2 + O(n^{4/3})$, according to Andersson, 1998.)

enough to allow checking by computer. Based on the known asymptotics of the top row and leftmost column, and on an examination of the near-right-triangular region of $\mathbf{q}^{(\infty)}$ that contains the numbers $\{1,2,\ldots,n\}$ for various n, Nikolai Beluhov conjectures that $\mathbf{q}^{(\infty)}_{i,j} \approx (\pi i + 2j)^2/(4\pi)$. Indeed, his formula does give a good approximation when i and j are small

Everything I know about this subject can be found at

http://cs.stanford.edu/~knuth/fasc14a.ps.gz

which is a very preliminary draft of Section 7.5.1 of The Art of Computer Programming, "Bipartite matching."

modified Tchoukaillon arrays, might lead to a nonlinear lower bound. I ran across Tchoukaillon while trying unsuccessfully to find a bipartite graph for which the Hopcroft-Karp algorithm for optimum matching runs as slowly as its theoretical worst case. One of the main open problems in the theory of bipartite matching is to find lower bounds for the running time of that algorithm; nobody has yet found an infinite family of bipartite graphs for which the algorithm doesn't run in linear time! The partial results in exercise 14 of my current draft, based on

On the other hand, I also kind of wish that the worst case of that algorithm is actually linear.