ANNOUNCING THE FIRST VOLUME OF A PLANNED SEVEN-VOLUME SERIES SUMMARIZING ALL PRESENT KNOWLEDGE OF COMPUTER PROGRAMMING TECHNIQUES.

Volume 1 Fundamental Algorithms

THE ART OF COMPUTER PROGRAMMING

DONALD E. KNUTH
California Institute of Technology

am overwhelmed by the wealth of exciting and fresh material you have managed to pack into the book, especially in view of the fact that it is only the first of seven volumes! "Monumental" is the only word for it . . . Moreover, it is written with a grace and humor that is, as you know, exceedingly rare in books on mathematics. I greatly enjoyed your dedication, your flow-chart for reading the series, your notes on the exercises; above all, your choice of illustrative material throughout and the clarity and brevity with which you explain everything".

MARTIN GARDNER, Mathematical Games, Scientific American

This combined reference and text, Fundamental Algorithms, is the first volume of a planned seven-volume series. The series will provide a unified, readable, and theoretically sound summary of the present knowledge of computer programming techniques, plus a study of their historical development.

The point of view adopted by the author differs from many contemporary books about computer programming. The author does not try to teach the reader how to use somebody else's subroutines, but is concerned rather with teaching the reader how to write better subroutines himself.

A reader who is interested primarily in programming rather than in the associated mathematics may stop reading each section as soon as the mathematics become recognizably difficult. On the other hand, a mathematically oriented reader will find a wealth of interesting material.

As a reference the series provides valuable information for system programmers, analyst programmers, and others in the computer and related software industries. All seven volumes of this series may also be used in senior or graduate courses such as: Information Structures, Computer Science, Combinatorial Mathematics, Computer-Oriented Finite Mathematics, or Fundamentals of Symbolic Machine Language Programming.

Among the areas covered in Volume 1 are the representation of information inside a computer; the structural interrelations between data elements and how to deal with them efficiently; plus applications to simulation, numerical methods, software design, and other factors. Also included is an introduction to fundamental topics in discrete mathematics, of special importance in the study of computer programming techniques.

There are over 850 exercises, graded according to the level of difficulty from extremely simple questions to unsolved research problems. Answers are supplied for over 90% of the exercises. This enhances the value of the book for self-study, classroom use, and for reference. And it helps make it possible to organize the book so that it can be read by both mathematicians and non-mathematicians.

CONTENTS

Volume 1 Fundamental Algorithms

Chapter 1—Basic Concepts

Algorithms

Mathematical Preliminaries

Mathematical Induction

Numbers, Powers, and Logarithms

Sums and Products

Integer Functions and Elementary Number Theory

Permutations and Factorials

Binomial Coefficients

Harmonic Numbers

Fibonacci Numbers

Generating Functions

Analysis of an Algorithm

Asymptotic Representations

The O-notation

Euler's summation formula

Some applications

MIX

Description of MIX

The MIX Assembly Language

Applications to Permutations

Some Fundamental Programming Techniques

Subroutines

Coroutines

Interpretive Routines

1.4.3.1. A MIX simulator

*1.4.3.2. Trace routines

Input and Output

History and Bibliography

Chapter 2—Information Structures

Introduction Linear Lists Stacks, Queues, and Deques

Sequential Allocation

Linked Allocation

Circular Lists

Doubly Linked Lists

Arrays and Orthogonal Lists

Trees

Traversing Binary Trees

Binary Tree Representation of Trees

Other Representations of Trees

Basic Mathematical Properties of Trees

Free trees

Oriented trees

The "infinity lemma"

Enumeration of trees

Path length

History and bibliography

Lists and Garbage Collection

Multilinked Structures

Dynamic Storage Allocation

History and Bibliography

Answers to Exercises

Appendix A-Index to Notations

Appendix B--Tables of Numerical Quantities

- 1. Fundamental Constants (decimal)
- 2. Fundamental Constants (octal)
- 3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers

Index and Glossary

Fig. 28. Representation of polynomials using four-directional links. Shaded areas of nodes indicate information irrelevant in the context considered.

THE COMPLETE SEVEN-VOLUME SET OF

THE ART OF COMPUTER PROGRAMMING

WILL FOLLOW THIS OUTLINE:

Volume 1: Fundamental Algorithms

Chapter 1. Basic Concepts

Chapter 2. Information Structures

Volume 2: Seminumerical Algorithms

Chapter 3. Random Numbers

Chapter 4. Arithmetic

Volume 3: Sorting and Searching

Chapter 5. Sorting Techniques

Chapter 6. Searching Techniques

Volume 4: Combinatorial Algorithms

Chapter 7. Combinatorial Searching

Chapter 8. Recursion

Volume 5: Syntactic Algorithms

Chapter 9. Lexical Scanning

Chapter 10. Parsing Techniques

Volume 6: Theory of Languages

Chapter 11. Mathematical Linguistics

Volume 7: Compilers

Chapter 12. Programming Language Translation

THE AUTHOR

Donald E. Knuth is Associate Professor of Mathematics at California Institute of Technology, where he received the Ph.D. degree in 1963. A specialist in the fields of computer science and combinatorial mathematics, Dr. Knuth is the author of numerous articles in the technical literature. His professional and honorary memberships include the Association for Computing Machinery, the Mathematical Association of America, the American Mathematical Society, Tau Beta Pi, Pi Delta Epsilon, and Sigma Xi.

ORDER VOLUME 1: FUNDAMENTAL ALGORITHMS NOW FOR FREE 10-DAY EXAMINATION.

Use the enclosed reply card, or write to Dept. 36889.

Volumes 2 to 7 will be published individually at future dates to be announced. Check the appropriate box on the reply card to automatically receive each future volume on 10-day free examination, when published. Or you may request only the advance announcements of each new volume, with the option of ordering on the same free 10-day examination.

THE SIGN OF

FIRST CLASS Permit No. 11 Reading, Mass.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY

ADDISON-WESLEY PUBLISHING COMPANY, INC.

READING, MASSACHUSETTS, U.S.A. 01867

Addison-Wesley Publishing Company, Inc. Reading, Massachusetts 01867

Please send for my examination and approval ______ copies of The Art of Computer Programming, Volume 1: Fundamental Algorithms, Knuth (3801), @ \$19.50 each. (I understand that I can return the book(s) in ten days if I decide not to keep them.)

Name____

Affiliation____

Address _____State ____Zip____

- ☐ Also ship Volumes 2, 3, 4, 5, 6, and 7 in The Art of Computer Programming Series for Free 10-day examination, as soon as each volume is published.
- ☐ Please send me only advance announcements when each new volume in this series is published, and I will advise you if I wish the volume sent to me on free 10-day examination.