F6. If C and C' are closed cones, and if $C^* + C'^*$ is closed, we have $(C \cap C')^* = C^* + C'^*$.

Proof. If A and B are arbitrary sets we have $A^* + B^* \subseteq (A \cap B)^*$, for if $x \in A^* + B^*$ and $y \in A \cap B$ then $x \cdot y = a \cdot y + b \cdot y \geq 0$. If A and B are arbitrary sets including 0 then $(A + B)^* \subseteq A^* \cap B^*$ by F2, because $A + B \supseteq A$ and $A + B \supseteq B$. Thus for arbitrary A and B we have $(A^* + B^*)^* \subseteq A^{**} \cap B^{**}$, hence

$$(A^* + B^*)^{**} \supseteq (A^{**} \cap B^{**})^*$$
.

Now let A and B be closed cones for which $A^* + B^*$ is closed; then $A^* + B^* \supseteq (A \cap B)^*$ by F5. \square

F7. If C and C' are closed cones, and if C + C' is closed, we have $(C + C')^* = C^* \cap C'^*$.

Proof. F6 says $(C^* \cap C'^*)^* = C^{**} + C'^{**}$; apply F5 and * again.

F8. Let S be any set of indices and let \overline{S} be all the indices not in S. Also let $A_S = \{ a \mid a_s = 0 \text{ for all } s \in S \}$. Then

$$A_S^* = A_{\overline{S}}$$
.

Proof. If $b_s = 0$ for all $s \notin S$ and $a_s = 0$ for all $s \in S$, obviously $a \cdot b = 0$; so $A_{\overline{S}} \subseteq A_S^*$. If $b_s \neq 0$ for some $s \notin S$ and $a_t = 0$ for all $t \neq s$ and $a_s = -b_s$, then $a \in A_S$ and $a \cdot b < 0$; so $b \notin A_S^*$, hence $A_{\overline{S}} \supseteq A_S^*$. \square

9. Definite Proof of a Semidefinite Fact

Now we are almost ready to prove the result needed in the proof of Lemma 7.

Let D be the set of real symmetric positive semidefinite matrices (called "spuds" henceforth for brevity), considered as vectors in N-dimensional space, where N=(n+1)n/2. We use the inner product $A \cdot B = \operatorname{tr} A^T B$; this is justified if we divide off-diagonal elements by $\sqrt{2}$. For example, if n=3 the correspondence between 6-dimensional vectors and 3×3 symmetric matrices is

$$(a, b, c, d, e, f) \leftrightarrow \begin{pmatrix} a & d/\sqrt{2} & e/\sqrt{2} \\ d/\sqrt{2} & b & f/\sqrt{2} \\ e/\sqrt{2} & f/\sqrt{2} & c \end{pmatrix}$$

preserving sum, scalar product, and dot product. A real symmetric matrix $\notin D$ has a negative eigenvalue λ , and we can write

$$A = Q \operatorname{diag}(\lambda, \lambda_2, \dots, \lambda_n) Q^T$$
(9.1)

for some orthogonal matrix Q. Thus $x^TAx = \lambda$ for the unit vector $x = Q(1, 0, ..., 0)^T$; it follows easily that D is a closed cone.

The cone of spuds turns out to be self-dual:

F9.
$$D^* = D$$
.

Proof. If A and B are spuds then $A = X^TX$ and $B = Y^TY$ and $A \cdot B = \operatorname{tr} X^TXY^TY = \operatorname{tr} XY^TYX^T = (YX^T) \cdot (YX^T) \geq 0$; hence $D \subseteq D^*$. (In fact, this argument shows that $A \cdot B = 0$ if and only if AB = 0, for any spuds A and B, since $A = A^T$.)

Conversely, assuming (9.1), let $B = Q \operatorname{diag}(1,0,\ldots,0) \ Q^T$; then B is a spud, and

$$A \cdot B = \operatorname{tr} A^T B = \operatorname{tr} Q \operatorname{diag}(\lambda, 0, \dots, 0) Q^T = \lambda < 0.$$

So A is not in D^* ; this proves $D \supseteq D^*$. \square

Let E be the set of all real symmetric matrices such that $E_{uv} = 0$ when u - v in a graph G; let F be the set of all real symmetric matrices such that $F_{uv} = 0$ when u = v or $u \neq v$. The Fact stated in Section 7 is now equivalent in our new notation to

Fact.
$$(D \cap E)^* \subseteq D + F$$
.

Proof. We have $D+F=D^*+E^*$ by F8 and F9. The argument in the Appendix below proves that D+F is closed. Hence $(D\cap E)^*=D+F$ by F6. \square

10. Another Characterization

Remember ϑ , ϑ_1 , ϑ_2 , and ϑ_3 ? We are now going to introduce yet another function

$$\vartheta_4(G,w) = \max \left\{ \sum_v c(b_v) w_v \mid b \text{ is an orthogonal labeling of } \overline{G} \right\}. \tag{10.1}$$

Lemma. $\vartheta_3(G, w) \leq \vartheta_4(G, w)$.

Proof. Suppose b is a normalized orthogonal labeling of \overline{G} that achieves the maximum ϑ_3 ; and suppose the vectors of this labeling have dimension d. Let

$$x_k = \sum_{v} b_{kv} \sqrt{w_v}, \quad \text{for } 1 \le k \le d;$$
 (10.2)

- 176 Selected Papers on Discrete Mathematics
- [18] M. W. Padberg, "On the facial structure of set packing polyhedra," *Mathematical Programming* **5** (1973), 199–215.
- [19] Claude E. Shannon, "The zero error capacity of a channel," *IRE Transactions on Information Theory* 2, 3 (September 1956), 8–19.

Addendum

The original paper tacitly assumed that the sum A+B of closed cones is closed; but that assumption is false. For example, if C is the "three-dimensional ice cream cone" defined by $\sqrt{c_1^2+c_2^2} \leq c_3$, and if $C'=\{(b_1,b_2,b_3)^T\mid b_1\geq b_3\}$, we have $C=C^*$ and $C'^*=\{(t,0,-t)^T\mid t\geq 0\}$ and $(0,1,0)^t\in (C\cap C')^*\setminus (C^*+C'^*)$. That violates the conclusion of F6.

This counterexample was pointed out by Evan DeCorte in 2014, who also found a valid proof of the crucial Fact in Section 9: Suppose we have a convergent sequence $A_n + B_n \to C$, where $A_n \in D$ and $B_n \in F$; we shall prove that $C \in D + F$, hence D + F is closed.

Let $\lambda_{n1} \geq \cdots \geq \lambda_{nN}$ be the eigenvalues of B_n . We have $\lambda_{n1} = \Lambda(B_n) \geq 0$, because $\lambda_{n1} + \cdots + \lambda_{nN} = \operatorname{tr} B_n = 0$. We also have $\Lambda(B_n) \leq \Lambda(A_n + B_n)$ by (6.2); furthermore $\Lambda(A_n + B_n) \leq M$ for some M and all n, because of the convergence. Hence $\lambda_{nN} \geq -MN$, and all eigenvalues of B_n are uniformly bounded. Therefore there is a subsequence in which all eigenvalues λ_{ni} converge to limiting values λ_i . It follows that $B_n \to B \in F$ and $A_n \to C - B \in D$.

Further information can be found in A. Galtman, "Spectral characterizations of the Lovász number and the Delsarte number of a graph," *Journal of Algebraic Combinatorics* **12** (2000), 131–143.

Problem P6 has been solved for p=1/2 by Uriel Feige and Robert Krauthgamer, "The probable value of the Lovász–Schrijver relaxations for maximum independent set," SIAM Journal on Computing **32** (2003), 345–370.