
The CVM Algorithm for Estimating Distinct Elements in Streams

(Don Knuth, Stanford Computer Science Department)
(25 May 2023, revised 29 December 2023)

Sourav Chakraborty, N. V. Vinodchandran, and Kuldeep S. Meel [2] have recently proposed an interesting
algorithm for the following problem: A stream of elements (a1, a2, . . . , am) is input, one at a time, and we
want to know how many of them are distinct. In other words, if A = {a1, a2, . . . , am} is the set of elements
in the stream, with multiplicities ignored, we want to know |A|, the size of that set. But we don’t have much
memory; in fact, |A| is probably a lot larger than the number of elements that we can hold in memory at
any one time. What is a good strategy for computing an unbiased estimate of |A|?

Their algorithm is not only interesting, it is extremely simple. Furthermore, it’s wonderfully suited to
teaching students who are learning the basics of computer science. (Indeed, ever since I saw it, a few days
ago, I’ve been unable to resist trying to explain the ideas to just about everybody I meet.) Therefore I’m
pretty sure that something like this will eventually become a standard textbook topic. This note is an initial
approximation to what I might write about it if I were preparing a textbook about data streams.

Of course every important algorithm needs a name. Following a well-established precedent for other
three-author procedures, such as the AKS algorithm, the KMP algorithm, and the LLL algorithm, I shall
call it the CVM algorithm in the present note.

Let At = {a1, . . . , at} denote the first t elements of the stream, ignoring multiplicity. The CVM algorithm
maintains a buffer of limited size, which remembers a randomly chosen subset of those elements; let Bt be
the contents of that buffer at time t. The algorithm also maintains a number pt such that the following
property always holds:

Pr(aj ∈ Bt) = pt, for 1 ≤ j ≤ t. (1)

It follows that the expected value of |Bt| is pt |At|; in other words,

|Bt|/pt is an unbiased estimate of |At|. (2)

(The situation is actually more delicate than the informal equation (1) suggests, because the left-hand
side of (1) is a probability while the right-hand side is a random variable! However, we shall see that the
ideas can be justified and that (2) is 100% correct.)

The algorithm in [2] was devised so that property (1) would be invariant. But the original formulation
contained a subtle bug, which is discussed in the appendix below. Fortunately there is a simple way to avoid
that problem, and I shall present an amended algorithm here. Algorithm D is what I propose to call the
CVM algorithm, and I believe it is indeed a candidate for inclusion in future textbooks.

There is one parameter, s, which denotes the maximum buffer size. It can be any positive integer. If the
buffer overflows on the tth step—that is, if |Bt| = s and we want to insert another element—we randomly
delete one of those s+ 1 elements, and adjust pt so that (1) remains true. The proper choice of pt requires
care; we use uniform deviates (uniformly random real fractions) for this purpose.

Algorithm D (Distinct element estimation). Given an arbitrary data stream A = (a1, a2, . . . , am) and a
buffer size s ≥ 1 as described above, this algorithm returns an unbiased estimate of |A| = |{a1, a2, . . . , am}|.
It uses a buffer B that’s capable of holding up to s ordered pairs (a, u), where a is an element of the stream
and u is a real number, 0 ≤ u < 1.

D1. [Initialize.] Set t← 0, p← 1, and B ← ∅.
D2. [Done?] Terminate if t = m, returning the estimate |B|/p.
D3. [Input a.] Set t← t+ 1 and a← at, the next element of the stream.

D4. [Remove a from B.] If B contains the pair (a, u), for any u, delete it.

D5. [Maybe put a in B.] Let u be a uniform deviate, independent of all others (namely a random real
number in the range 0 ≤ u < 1). If u ≥ p, go back to step D2. Otherwise, if |B| < s, insert (a, u) into B
and go back to step D2.

D6. [Maybe swap a into B.] (At this point u < p and |B| = s.) Let (a′, u′) be the element of B for which
u′ is maximum. If u > u′, set p← u. Otherwise replace (a′, u′) in B by (a, u) and set p← u′. Then go
back to step D2.

• An Example. In order to become familiar with this algorithm, let’s watch it at slow speed in one of
the simplest possible cases. Assume that s = 1, and that the input stream consists of just m = 3 distinct
elements (a1, a2, a3). Since p is initially 1 and B is initially empty, step D5 will insert (a1, u1) into B, where
u1 is a uniform deviate.

The next time we reach step D5, however, we’ll have (a, u) = (a2, u2), where u2 < p = 1 but |B| = 1 = s.
So the buffer is full, and we’ll proceed to step D6 for the first time. If u1 < u2, step D6 will set p ← u2;
otherwise it will set p← u1 and B ← {(a2, u2)}.

And when we reach step D5 with t = 3 and (a, u) = (a3, u3), the possibilities multiply. Six scenarios
are possible before termination, depending on the relative order between u1, u2, and u3: Either

• u1 < u2 < u3 and p = u2 and B = {(a1, u1)}; or
• u1 < u3 < u2 and p = u3 and B = {(a1, u1)}; or
• u2 < u1 < u3 and p = u1 and B = {(a2, u2)}; or
• u2 < u3 < u1 and p = u3 and B = {(a2, u2)}; or
• u3 < u1 < u2 and p = u1 and B = {(a3, u3)}; or
• u3 < u2 < u1 and p = u2 and B = {(a3, u3)}.

Each of these six cases is equally likely. And in each case, B holds the single pair (aj , uj), where uj is the
minimum of {u1, u2, u3}. Furthermore, p is always the second smallest of {u1, u2, u3}.

We’ll see in a moment that the average value of 1/p is 3 in each case (although the average value of p
itself is 1/2). Therefore the result returned by the algorithm, namely |B|/p, is unbiased: It has the correct
expected value, namely |A| = 3.

Now let’s make a slight change. Suppose a2 �= a1, as before, but a3 = a1. Thus |A| is now 2. Again the
algorithm will base its computation on three uniform deviates, u1, u2, and u3; and it’s not difficult to see
that the six equiprobable outcomes will now be either

• u1 < u2 < u3 and p = u2 and B = ∅; or
• u1 < u3 < u2 and p = u2 and B = {(a3, u3)}; or
• u2 < u1 < u3 and p = u1 and B = {(a2, u2)}; or
• u2 < u3 < u1 and p = u3 and B = {(a2, u2)}; or
• u3 < u1 < u2 and p = u2 and B = {(a3, u3)}; or
• u3 < u2 < u1 and p = u2 and B = {(a3, u3)}.

This time there’s much more variety than before. The value that will be returned in step D2 turns out to be

0/U3,2 or 1/U3,3 or 1/U3,2 or 1/U3,2 or 1/U3,3 or 1/U3,2, (3)

each with probability 1/6, where Um,k is a random variable:

Um,k = the kth smallest of m independent uniform deviates. (4)

The probability distribution of Um,k is well known to be the “beta distribution with parameters k and
m+ 1− k,” namely

Pr(Um,k ≤ x) = k
(m
k

)∫ x

0

tk−1(1− t)m−kdt for 0 ≤ x ≤ 1; (5)

this can be proved, for example, by the principle of inclusion and exclusion. Consequently

E (1/Um,k) = k
(m
k

)∫ 1

0

tk−2(1− t)m−kdt =
m

k − 1
, for 1 ≤ k ≤ m. (6)

(
A similar argument shows that E Um,k = k/(m+ 1).

)
The expected value of (3) therefore comes to

1

6

(
0
(3
1

)
+ 1

(3
2

)
+ 1

(3
1

)
+ 1

(3
1

)
+ 1

(3
2

)
+ 1

(3
1

))
= 2, (7)

as it should. Algorithm D works, in this case!

• Validity. In the discussion that follows, it will be convenient to have a name for the uniform deviate ut
that is associated with at in step D5. Let’s call it the “volatility” of at, because an element with low volatility
will remain in B with high probability (until it occurs again in the stream and gets a brand new volatility).

We want to verify that condition (1) holds, where pt is the value of p at the beginning of step D2. In
fact we can verify a more precise statement:

Lemma M. Let ut be the uniform deviate generated in step D5. For every a ∈ {a1, . . . , at}, let j be

maximum such that aj = a. Then (a, uj) ∈ B in step D2 if and only if uj < pt.

Proof. This statement holds vacuously when t = 0; we shall use induction on t. Notice that the value of p
changes only in step D6.

Assuming that the lemma holds at time t, and that t < m, we need to prove that it’s true also at time
t + 1. After step D3 advances t, the logic of steps D4 and D5 guarantees that it remains true whenever
u ≥ p, and whenever |B| < s after step D4.

The remaining case takes us to step D6. Then the buffer, together with (a, u), contains s + 1 pairs
{(b1, v1), . . . , (bs+1, vs+1)}, whose volatilities are s + 1 independent uniform random numbers in the range
0 ≤ vj < p, by the induction hypothesis. The effect of step D6 is to discard the pair (bj , vj) for which vj
is largest, and to set p ← vj . And this change clearly preserves the assertion of the lemma, because the
volatilities of the s remaining pairs are independent uniform random fractions less than the new p.

• Implementation. To carry out Algorithm D we need a data structure for B that is capable of holding
up to s pairs, where each pair (a, u) consists of a key a and its volatility u. We use this data structure as
a dictionary in step D4, when we need to know if a given key is present. We also use it as a priority queue
(sometimes called a “heap”) in step D6, when we need to know the pair with maximum volatility. Both of
those operations, as well as the insertion of new pairs and the deletion of existing pairs, should be efficient.

Thus the treap structure, introduced by Cecilia Aragon and Raimund Seidel in [1], and previously
discovered by Jean Vuillemin with completely different motivations under the name “Cartesian trees” [10],
is a perfect fit for Algorithm D. Treaps are binary trees in which every node carries two items of data, (a, u).
Treap nodes are symmetrically ordered left-to-right on their first components, and heap-ordered on their
second components. That is, every node in the left subtree of node (a, u) has a key less than a; every node
in the right subtree has a key greater than a; and every ancestor node has a volatility greater than u.

It turns out that a unique binary tree satisfies both of those requirements, for every given set of (a, u)
pairs in which all keys are distinct and all volatilities are distinct. It’s the search tree that we get when keys
are inserted in decreasing order of volatility. When the volatilities are random, as they are in our application,
the shape of the treap is therefore a random binary search tree. Consequently, by the well-known theory of
such trees (see for instance [5, Section 6.2.2]), the depths of its nodes tend to be at most about 2 ln s, when
the size is bounded by s, and all of the operations that we need are quite efficient on average.

There’s not space here for further details about treap manipulation. But I had lots of fun preparing
the sample implementation [9]; interested readers are invited to download that program and to play with it,
possibly even to read it. The algorithms are short and elegant, though nontrivial.

The program in [9] uses 31-bit pseudorandom binary fractions, between 0 and 1− 2−31, instead of truly
uniform random real-valued fractions. Therefore it will usually encounter volatilities ut that exactly match
previous volatilities ut′ , after t gets larger than 50000 or so. But the effects of such birthday-paradoxical
coincidences on the final estimate are negligible, because they matter only when a “collision” happens at the
precise probability cutoff (the final value of p). Rare events can occur when u = p in step D5, or when more
than one pair (a′, u′) has maximum volatility in step D6. They are reported so that the user can verify their
insignificance. But such reports are hardly ever seen in practice. (Notice that several nodes may actually
have to be removed in step D6, until all remaining volatilities are strictly less than the new value of p.)

• Empirical Results. Let’s look at some numbers, in order to understand how Algorithm D actually works
in practice. I’ll consider several kinds of streams whose length, m, is 1,000,000—a modest number, yet large
enough to give realistic insights.

Stream A1 = (8777534, 4951232, 6208406, . . .) simply consists of a million 7-digit numbers chosen at
random. (I used the random number generator of the Stanford GraphBase [6], using seed 314159, and

calling gb unif rand (10000000) a million times.) It happens to have exactly n = 951831 distinct elements.
Of these, 905276 occur just once; but one element occurs five times, and 41 of them occur four times.

Does Algorithm D make good estimates when given stream A1? It all depends, of course, on the buffer
size, s. We certainly can’t expect to get decent results when s has its minimum value 1; but what the heck,
let’s try it anyway. Nine random trials give the estimates

0, 298158, 577513, 797283, 1102121, 1577292, 1797809, 2067870, 2507278, (8)

when sorted into order and truncated; so the median value, 1102121, actually isn’t too far off. (Of course any
value greater than 1000000 is ridiculous, because the stream has only a million elements to start with! Yet
an unbiased estimate must sometimes be greater than m in order to balance cases when it is very small, if n
is near m.) Another set of nine trials with s = 1 gives a median estimate of 523840, as well as a maximum
estimate of 7242777. This experience confirms our conjecture that s = 1 will produce very flaky results.
Nine trials with s = 10 exhibit some improvement:

436316, 778091, 785233, 792648, 836263, 859595, 1021711, 1190962, 1602061; (9)

indeed, two of these estimates are within 10% of the truth. And with s = 100 there’s further progress,

842439, 846607, 901347, 907046, 944089, 949036, 975275, 1027772, 1066863, (10)

with two now within 1% of 951831. And of course things get even better with s = 1000, 10000, 100000:

933812, 940562, 941328, 941954, 952237, 952478, 963062, 970606, 976802;
937620, 943866, 944334, 945349, 948613, 951159, 954800, 956146, 958711; (11)
947567, 951914, 952288, 952379, 953424, 953893, 954602, 954923, 957189.

Consider now a second test stream A2 = (1, 2, 3, . . .), which is completely different from A1: Here we
simply set at = tmod 50000, with no randomness involved. The stream therefore consists of 50000 distinct
elements, repeated 20 times in the same order. Nine random trials with each of s = 1, 10, 100, 1000, 10000,
100000 yield the following approximations to the truth:

0, 0, 0, 0, 0, 0, 0, 0, 327685;
11315, 28376, 34651, 40548, 46217, 47496, 52164, 61905, 64441;
41697, 44320, 46853, 47183, 47814, 47941, 48586, 48857, 55061;
46935, 47869, 48059, 48329, 49155, 49318, 50056, 50893, 51414; (12)
49429, 49837, 49889, 50049, 50066, 50096, 50840, 50850, 50853;
50000, 50000, 50000, 50000, 50000, 50000, 50000, 50000, 50000.

I also tried six more streams with m = 1000000, in order to investigate how Algorithm D adapts itself
to different kinds of input data. Stream A3 = (0, 0, 0, . . . , 1, 1, . . .) simply has at = �t/20	; it’s sort of a
dual to A2, and of course it’s quite trivial. (Notice that n = 50001 in this case, not 50000, because the final
element a1000000 = 50000 is unique. I’ve included A3 in this list because Algorithm D is supposed to work
in all cases, whether they are trivial or not.)

Stream A4 = (7534, 1232, 8406, . . .) has at = xt+10000�t/10000	, where xt is a random 4-digit number.
Thus it consists of ten thousand disjoint blocks of ten thousand numbers each. In this case the total number
of distinct elements, n, is 632087 ≈ (1− 1/e)m, as expected.

Stream A5 = (26214270, 14654912, 16777150, . . .) has at = 2xt | xt, which is the number we get by
shifting the binary representation of xt left one place and taking the bitwise OR with xt itself, where xt is
the element from stream A1. For example, since x1 = 8777534 = (100001011110111100111110)2, we have
2x1 | x1 = (1100011111111111101111110)2 = 26214270.

Stream A6 = (0101376, 6167318, 2103824, . . .) has at = x2t−1 & x2t, the bitwise AND of x2t−1 and x2t,
where again each xt comes from A1. For example, 8777534 & 4951232 = (100001011110111100111110)2&
(010010111000110011000000)2 = (000000011000110000000000)2 = 0101376. In this stream a number whose
sideways sum is k is about three times as likely to occur as a number whose sideways sum is k + 1. (The
“sideways sum” of x is the number of 1s in x’s binary representation.)

Stream A7 = (338980, 740917, 359332, . . .) has at = x2t + y2t , where xt and yt are uniformly random
3-digit numbers. For example, 5342 + 2322 = 338980.

And finally, stream A8 = (21787, 90991, 39323, . . .) is perhaps the most interesting of them all. It
consists of a million 5-digit numbers, for which each of the 100000 possible values occurs at least once. In
fact, it was chosen to be uniformly random, among all

{
1000000
100000

}
100000! such sequences. (Here

{
m
n

}
denotes

a Stirling number of the second kind. The number of ways to put m balls into n urns, leaving no urn empty,
is
{
m
n

}
n!. Stream A8 was found on the 82nd random trial, after the first 81 trials failed to “fill every urn.”)

Here, in graphic form, are typical results obtained with all eight of the example streams.

1.1n

1.0n

0.9n

1.1n

1.0n

0.9n

A1, n = 951831 A2, n = 50000 A3, n = 50001 A4, n = 632087

1.1n

1.0n

0.9n

1.1n

1.0n

0.9n

A5, n = 285039 A6, n = 405444 A7, n = 274399 A8, n = 100000

Each stream has generated a vertical line of data for each of six buffer sizes, s = (1, 10, 100, 1000, 10000,
100000), with nine independent estimates for each s. They’ve been “plotted” with white circles, except that
the median estimate has a black circle. (Many of the circles overlap; the black one has been plotted last,
hence it might cover all the others.) An estimate less than 0.8n or greater than 1.2n isn’t shown. A vertical
line runs from the smallest estimate to the largest one; however, that line has been truncated in cases where
it would have fallen below 0.8n or above 1.2n. The graphs for A1 and A2 correspond to the numeric data
that was presented earlier.

• A Coarser Method. Suppose we replace step D6 by the following substitute:

D6′. [Halve the buffer.] (At this point u < p and |B| = s.) Remove every element (a′, u′) of B for which
u′ ≥ p/2; then set p ← p/2. If B hasn’t changed, and if u is still less than the new value of p, repeat
this step. Otherwise insert (a, u) into B if u < p. Then go back to step D2.

In this version, p is always 2−k for some integer k. Therefore step D6′ usually has a rather drastic effect
on B, reducing the number of elements to about s/2.

Lemma M remains true. Hence the algorithm still returns an unbiased estimate.
As before, we can implement everything conveniently by exploiting the treap structure: To perform the

new step D6′, we repeatedly remove the root until the treap either becomes empty or the volatility of its
root is less than the new p (the former p/2). (The latter condition may already hold at the beginning of
step D6′, in which case the treap doesn’t change.)

It’s not difficult to verify that the value of p in this modification, call it pbin, is always less than or equal
to the value of p in the original Algorithm D. In fact, the new value “brackets” the former one: We have

pbin ≤ p < 2pbin (13)

by induction on the computation, throughout the process.
This binary version of Algorithm D, which we shall call Algorithm D′, doesn’t give better estimates.

But we shall see that it’s a lot simpler to analyze. In the first place, we can prove that step D6′ almost never
has to repeat itself.

Lemma R. The probability that step D6 ′ is ever performed more than once before it returns to step D2

is at most m/2s+1.

Proof. At each time t, for 1 ≤ t ≤ m, step D6′ will return immediately to D2 unless u < p/2 and each of the
s volatilities in B is also less than p/2. But those volatilities are s+1 independent and uniformly distributed
numbers between 0 and p.

Suppose, for example, that s = 100. Then the chance of a repeat at time t is 2−101, which is less than
4 · 10−31. It won’t happen! (Unless the stream length m amounts to many octillions.)

Next we will prove that p stays reasonably large throughout the computation.

Theorem S. Let n be the number of distinct elements in the input stream. The probability that variable p
in Algorithm D′ becomes less than (s+ 1)/(4n) is at most me−(s+1)/6 +m/2s+1.

Proof. To fix the ideas, let’s suppose that n = 10000 and s = 100. Then 4n/(s+1) ≈ 392.2, so (s+1)/(4n) lies
between 1/256 and 1/512. We want to show that Algorithm D′ is unlikely to reduce p from 1/256 to 1/512.

Indeed, at time t each of the n distinct elements a has a current volatility, which is either 1 (if a hasn’t
yet been seen) or the uniform deviate u that was most recently associated with a in step D5. Step D6′ will
be activated if and only if 101 of those 10000 volatilities are less than p. But when p = 1/256, the expected
number of such small volatilities is at most np ≈ 39.1; and that’s considerably smaller than 101. Hence the
probability of such an extreme event must be quite small.

A special case of the well-known “Chernoff bound,” proved for example in exercise 1.2.10–22(b) of [4],
states that

Pr
(
Xn,p ≥ np(1 + δ)

) ≤ e−δ
2np/(2+δ), if δ ≥ 0, (14)

where the random variable Xn,p represents the number of heads that show up during n independent flips of
a p-coin (a coin that comes up heads with probability p).

So we plug in the values n = 10000, p = 1/256, np(1+ δ) = 101, and find δ ≈ 1.61, δ2np/(2+ δ) ≈ 28.1,
and e−28.1 ≈ 6 · 10−13. Yes; that’s quite small.

In general we let p = 1/2k when 2k ≤ 4n/(s+1) < 2k+1, and define δ by the formula np(1+ δ) = s+1.
Then, letting α = np/(s+1), we have 1

4 ≤ α < 1
2 and δ = 1/α−1 and δ2α/(2+δ) = α+4/(1+α)−3 > 1/6.

Chernoff’s bound, in (14), is therefore less than e−(s+1)/6.
By adding m/2s+1 to that upper bound, we can assume that step D6′ is performed at most m times.

We’re now ready to prove that the estimates of Algorithm D′ do not stray too far from the truth.

Theorem T. Let Y be the estimate returned by Algorithm D′, and let ε ≥ 0. The probability that

Y ≥ (1 + ε)n is at most e−ε
2(s+1)/(8+4ε)/(1 − e−ε

2(s+1)/(8+4ε)) + me−(s+1)/6 + m/2s+1. Furthermore, the

probability that Y ≤ (1− ε)n is at most e−ε
2(s+1)/8/(1− e−ε

2(s+1)/8) +me−(s+1)/6 +m/2s+1.

Proof. Suppose, as above, that 2k ≤ 4n/(s + 1) < 2k+1. Theorem S tells us that p will be 2−k or
more, except with probability me−(s+1)/6 + m/2s+1. By Lemma M and (14), we have Pr

(
Y ≥ (1 + ε)n

and p = 2q−k
) ≤ Pr(Xn,2q−k ≥ (1 + ε)n2q−k) ≤ exp(−2qε2(s + 1)/(8 + 4ε)). Summing on q ≥ 0 gives the

first statement. For the second statement, we need another well-known Chernoff bound, namely

Pr
(
Xn,p ≤ np(1− δ)

) ≤ e−δ
2np/2, if 0 ≤ δ ≤ 1. (15)

The second statement is, of course, trivial when ε > 1.

Corollary T. Theorem T applies also to the estimate returned by Algorithm D.

Proof. We have np ≥ (s+ 1)/4 whenever npbin ≥ (s+ 1)/4, because of (13).

Exercise 10 below illustrates how Corollary T can be used in practice to choose a buffer size s compatible
with m, ε, and δ.

• (optional) A Closer Look. We noticed earlier that the sequence of decisions taken by Algorithm D can be
broken down into m! cases, depending on the relative order of the volatilities u1, . . . , um that are assigned in
step D5. Each permutation of those uniform deviates determines the size of B when the algorithm terminates,
as well as the rank of the final cutoff probability p. If p is the kth smallest of the m volatilities, the estimate
that’s computed by Algorithm D is |B|/Um k, where Um k is the random variable defined in (4) and (5).

For example, it turns out that the nine empirical estimates for stream A1, which were obtained in (10)
for the case s = 100, were respectively

100

Um,110
,

100

Um,107
,

100

Um,105
,

100

Um,107
,

99

Um,105
,

100

Um,104
,

100

Um,112
,

100

Um,102
,

99

Um,105
, (16)

where m = 1000000, with respect to the nine permutations of volatilities that were generated in each case.
[We observed in (6) that the random variable 1/U1000000,k has the mean value 1000000/(k− 1). Hence

the mean values of the estimates in (16) are respectively

917431, 943396, 961538, 943396, 951923, 970873, 900900, 990099, 951923, (17)

when truncated to integers. The difference between (17) and (10) comes from the fact that, for example, the
random variable 100/U1000000,110 has a standard deviation of ≈ 88793.2; see exercise 6 below.]

Pursuing this line of thought leads us to a “meta-algorithm” that is equivalent to carrying out Algo-
rithm D simultaneously for all buffer sizes at once.

We can assume without loss of generality that the input stream A is a restricted growth string—namely
that a1 = 0, that a2 = 0 or 1, and in general that at+1 ≤ max{a1, . . . , at}+ 1. (See [7, §7.2.1.5].) For if we
take any stream A, there’s a restricted growth string (a′1, . . . , a

′
m) such that a′i = a′j if and only if ai = aj .

(Let a′t = a′j if at = aj for some j < t; otherwise let a′t = |{a1, . . . , at−1}|.)
AlgorithmM (Meta-estimation of distinct elements). Given a restricted growth string A = (a1, a2, . . . , am),
this algorithm computes unbiased estimatesX1,X2, . . . ,Xm−1 of the quantity |A| = |{a1, a2, . . . , am}|, where
Xs is the estimate for buffer size s that is returned by Algorithm D. It uses an auxiliary vector (v0, . . . , vm−1)
of volatilities, an auxiliary vector (w0, . . . , wm−1) of sorted volatilities, and an auxiliary vector (p0, . . . , pm−1)
of cutoff probabilities. It does not try to be efficient.

M1. [Initialize.] Set ps ← vs ← 1 for 0 ≤ s < m.

M2. [Loop on t.] Do step M3 for t = 1, 2, . . . , m; then proceed to step M4.

M3. [Process at.] Set vat ← ut, where ut is an independent uniform deviate. Let w0 ≤ · · · ≤ wm−1 be the
result of sorting {v0, . . . , vm−1} into nondecreasing order. Set ps ← min{ps, ws} for 0 ≤ s < m.

M4. [Finish.] Set Xs =
(∑m−1

a=0 [va<ps]
)
/ps, for 1 ≤ s < m.

Proceeding cautiously as we did earlier, we can readily become familiar with this algorithm by watching
what it does with the simplest nontrivial stream, A = (0, 1, 0). There are six equiprobable cases: Either

• u1 < u2 < u3 and p1 = u2 and X1 = 0/p1 = 0/u2; or
• u1 < u3 < u2 and p1 = u2 and X1 = 1/p1 = 1/u2; or
• u2 < u1 < u3 and p1 = u1 and X1 = 1/p1 = 1/u1; or
• u2 < u3 < u1 and p1 = u3 and X1 = 1/p1 = 1/u3; or
• u3 < u1 < u2 and p1 = u2 and X1 = 1/p1 = 1/u2; or
• u3 < u2 < u1 and p1 = u2 and X1 = 1/p1 = 1/u2.

(And p2 = 1, X2 = 2 in all cases.) Indeed, it’s not difficult to verify that Algorithm M always ends with
p0 < p1 < · · · < pn = · · · = pm−1 = 1, when |A| = n.

Algorithm M is correct because of a simple consequence of Lemma M:

Corollary M. Let vt,a be the current volatility of element a in step M3 at time t. (Thus vt,a = uj in the
notation of Lemma M.) Then, in step D2 at time t when Algorithm D has buffer size s, we have a ∈ B if

and only if vt,a < ps in step M3 at time t.

Proof. By step M3, the value of ps is the smallest value of ws that has occurred up to time t, where ws is the
(s+ 1)st smallest current volatility of any element. Therefore the value of ps decreases in step M3 precisely
at those times t when Algorithm D, given buffer size s, would decrease p. In fact, Algorithm D’s variable p
is the same as Algorithm M’s variable ps, at every time t.

Returning to our observation that these algorithms essentially depend on the relative order of the
volatilities, rather than on their actual values, we can now convert Algorithm M into an all-integer procedure
that determines the exact distribution of every estimate Xs.

Algorithm M′ (Discrete meta-estimation of distinct elements). This reformulation of Algorithm M gen-
erates a random permutation u1u2 . . . um of the integers {0, 1, . . . ,m − 1} instead of generating uniform
deviates. We now have ut = k if and only if ut was the (k + 1)st smallest of {u1, . . . , um} in Algorithm M.

M1′. [Initialize.] Set ps ← vs ← m for 0 ≤ s < m, and ut ← t− 1 for 1 ≤ t ≤ m.

M2′. [Loop on t.] Do step M3′ for t = 1, 2, . . . , m; then proceed to step M4′.

M3′. [Process at.] Let k be a uniformly random integer in the (m+1− t)-element set {t, . . . ,m}, and swap
ut ↔ uk. Then set vat ← ut. Let w0 ≤ · · · ≤ wm−1 be the result of sorting {v0, . . . , vm−1} into
nondecreasing order. Set ps ← min{ps, ws} for 0 ≤ s < m.

M4′. [Finish.] Set Xs =
(∑m−1

a=0 [va<ps]
)
/Um,ps+1, for 1 ≤ s < m, where Um,k is defined in (4) and (5).

For example, the six equiprobable cases for A = (0, 1, 0) listed above have u1u2u3 = (012, 021, 102, 201, 120,
210); they yield the respective estimates 0/U3,2, 1/U3,3, 1/U3,2, 1/U3,2, 1/U3,3, 1/U3,2, as in (3).

I applied Algorithm M′ to stream A1 with five different sources of pseudorandom numbers, obtaining
the following results:

X1 X10 X100 X1000 X10000 X100000

1/Um,2 10/Um,12 100/Um,107 1000/Um,1049 10000/Um,10498 100000/Um,104982

1/Um,2 10/Um,13 100/Um,108 1000/Um,1043 9999/Um,10497 100000/Um,104970

1/Um,2 10/Um,11 100/Um,108 1000/Um,1050 10000/Um,10521 100000/Um,105160

1/Um,2 10/Um,11 100/Um,104 999/Um,1075 10000/Um,10545 100000/Um,105210

1/Um,2 10/Um,11 100/Um,107 1000/Um,1055 10000/Um,10506 100000/Um,105137

(A1)

We can now see the “structure” that underlies empirical results such as (8), (9), (10), and (11).

Similarly, Algorithm M′ reveals Algorithm D’s typical behavior on the other seven example streams:

X1 X10 X100 X1000 X10000

1/Um,9 3/Um,103 75/Um,1633 892/Um,18170 9918/Um,195556

0/Um,5 3/Um,73 66/Um,1360 925/Um,18127 9772/Um,196186

0/Um,4 5/Um,110 65/Um,1440 944/Um,18379 9760/Um,195041

(A2)

X1 X10 X100 X1000 X10000

0/Um,49 9/Um,195 99/Um,1811 999/Um,19673 10000/Um,201119

0/Um,6 9/Um,199 99/Um,2020 999/Um,20244 10000/Um,200652

0/Um,3 9/Um,204 99/Um,2041 999/Um,20165 9999/Um,198719

(A3)

X1 X10 X100 X1000 X10000 X100000

1/Um,2 10/Um,16 100/Um,140 998/Um,1561 9998/Um,15533 100000/Um,157720

0/Um,4 9/Um,17 100/Um,138 1000/Um,1550 9999/Um,15814 100000/Um,158181

0/Um,4 10/Um,28 100/Um,166 1000/Um,1582 10000/Um,15758 100000/Um,158350

(A4)

X1 X10 X100 X1000 X10000 X100000

1/Um,2 9/Um,33 98/Um,371 1000/Um,3635 9997/Um,35313 100000/Um,351336

1/Um,5 8/Um,31 100/Um,324 999/Um,3491 10000/Um,34993 100000/Um,352070

1/Um,2 8/Um,39 100/Um,426 999/Um,3451 9991/Um,35051 99996/Um,351861

(A5)

X1 X10 X100 X1000 X10000 X100000

1/Um,4 6/Um,23 96/Um,279 1000/Um,2494 9999/Um,24391 100000/Um,246772

0/Um,5 9/Um,23 100/Um,243 995/Um,2502 10000/Um,24543 99999/Um,247015

0/Um,2 8/Um,30 100/Um,229 999/Um,2412 9999/Um,24629 99998/Um,246946

(A6)

X1 X10 X100 X1000 X10000 X100000

1/Um,2 8/Um,34 87/Um,312 990/Um,3629 9993/Um,36628 99994/Um,364984

0/Um,3 7/Um,23 99/Um,385 992/Um,3764 9969/Um,36545 99984/Um,365507

0/Um 3 10/Um 35 94/Um 323 1000/Um 3608 10000/Um 36541 99996/Um 364837

(A7)

X1 X10 X100 X1000 X10000

1/Um,4 6/Um,76 79/Um,876 948/Um,9562 9949/Um,98298

1/Um,5 9/Um,54 77/Um,791 934/Um,9034 9836/Um,98234

0/Um,3 3/Um,36 73/Um,769 971/Um,9322 9870/Um,98689

(A8)

In these experiments the buffer tends to remain nearly full, except in streams A2 and A8, which have
the most “diversity.” The value of ps tends to be roughly sm/n.

We can summarize what we’ve just learned as follows:

Theorem D. For every stream A = (a1, a2, . . . , am), the estimate Xs returned by Algorithm D when s < |A|
is a mixture of m! random variables

Xπ,s = qπ,s/Um,pπ,s+1, (18)

one for each permutation π of {0, 1, . . . ,m− 1}, where each permutation occurs with probability 1/m!. Here
qπ,s and pπ,s are integers, depending on A, with qπ,s ≤ s and pπ,s ≥ s. We have

EXs =
1

m!

∑
π

qπ,sm/pπ,s = |A|. (19)

Proof. This result is an immediate consequence of Algorithm M′, with pπ,s the value of ps for the permutation

π = u1 . . . um in step M4′, and with qπ,s =
∑m−1

a=0 [va<pπ,s]. Equation (19), in connection with (6), simply
states that the estimate is unbiased; and we know from Lemma M that it is.

• (optional) Asymptotic Analysis. To conclude this study, I had hoped to use Theorem D to sharpen the
results of Corollary T, because the actual performance of Algorithm D in practice is noticeably better than
the comparatively weak theoretical guarantees that are derivable from the coarser Algorithm D′. Algorithm D
is quite simple, so I believed that I’d be able to analyze its behavior without great difficulty.

Alas, after several weeks of trying, I must confess that I’ve failed to get much further. Indeed, I think
Algorithm D may well be the simplest algorithm that lies beyond my current ability to carry out a sharp
analysis! However, I shall record here some of the things that I tried, and some of the questions that have
me stumped at the moment, in hopes that interested readers may be able to resolve them.

Going back to basics, we’re given a stream A of length m, and a buffer size s. The stream contains
exactly n = |A| distinct elements, but we don’t know n. Theorem D tells us that Algorithm D’s estimate
Xs is a random variable whose mean value, n, is correct.

The value of Xs is rarely an integer, except when it’s 0, or when s ≥ n and Xs = n. So we certainly can’t
expect absolute perfection. But we’d like to know that Xs is almost always a pretty good approximation to
the truth. Algorithm M′ reduces the analysis to an interesting problem about permutations.

I began by introducing some further notation. We may assume that A = (a1, . . . , am) is one of the
{
m
n

}
restricted growth strings whose maximum element is n− 1. Let l be the smallest index for which al = n− 1.
And for l ≤ t ≤ m, let Bt be the set {bt,0, bt,1, . . . , bt,n−1}, where bt,k is the largest index j ≤ t such that
aj = k. Notice, for example, that bt,at = t, and that bt+1 is obtained from Bt by removing bt,at+1 and
replacing it by t + 1. For all k �= at+1, we have bt+1,k = bt,k. The elements of array w in step M3′ are
{ubt,k | 0 ≤ k < n}. The value of qπ,s in (18) is the number of elements of Bm whose volatility is less than pπ,s.

My first goal was to study the value of ps = pπ,s in step M4′, and to show that it’s fairly well concentrated
about the value sm/n. I took a leisurely path to the analysis, using the concrete parameters m = 1000000,
n = 10000, and s = 100, before attempting to resolve the general case. For these particular parameters we
have sm/n = 10000; so I tried first to prove that ps is unlikely to be ≤ 5000.

Let f(p) be the number of ways to choose 10000 nonnegative integers less than 1000000 so that the
101st smallest of those integers is p. There are

(
p

100

)
ways to choose the integers less than p, and

(
999999−p

9899

)
ways to choose the integers greater than p. Hence we have

f(p) =
(p

100

)(999999− p

9899

)
; and g(p) =

f(p)

f(p− 1)
=

p

p− 100
· 990101− p

1000000− p
. (20)

Since g(p) = 1 when p = p∗ = 100000000/9999≈ 10001, we deduce that f(p− 1) ≤ f(p) when p ≤ p∗ and
f(p− 1) ≥ f(p) when p > p∗. In particular, the maximum f(p) occurs when p = 10001.

Now we can show that it’s quite unlikely to have p ≤ 5000. For the values decrease faster than
geometrically: f(5000− k) = f(5000)/(g(5000)g(4999) . . . g(5001− k)) ≤ f(5000)/g(5000)k. It follows that

Pr(p ≤ 5000)

Pr(p = 5000)
≤

5000∑
k=0

1

g(5000)k
<

g(5000)

g(5000)− 1
=

985101

10001
< 100. (21)

And Pr(p = 5000) is quite small, namely f(5000)/
(
1000000
10000

) ≈ 10−12. So Pr(p ≤ 5000) < 10−10.
If ps in step M4′ is 5000 or less, at least one of the 1000000− l sets Bt will lead to an array w with 10000

nonnegative integers less than 1000000, whose 101st smallest element is at most 5000. The probability that
this happens is less than 1000000 times Pr(p ≤ 5000), which is approximately 10−4. Thus I’ve accomplished
my objective when s = 100, m = 1000000, and n = 10000.

Suppose we keep those values of s and m unchanged, but reduce n from 10000 to 1000; is ps then
unlikely to be at most 50000? The answer, by essentially the same argument, is yes; it’s now even less likely
than it was before. And similarly we’re OK when n = 100000 and we consider Pr(ps ≤ 500).

So I examined all values of n, and found that the worst upper bound for ps ≤ 1
2sm/n by this method

occurs when n is approximately 7000. Good news: This extremal upper bound was only about 2% higher
than the bound that worked for n = 10000. I was glad to see that the method had therefore turned out to
be satisfactory when s = 100 and m = 1000000, and I had high hopes that it would work well also in the
general case.

The probability distribution that replaces (20) in general is

f(p) =
(p
s

)(m− 1− p

n− 1− s

)
; and g(p) =

f(p)

f(p− 1)
=

p

p− s
· m− n+ s+ 1− p

m− p
. (22)

Furthermore the “mode” is p∗ = sm/(n− 1).
I showed this to Persi Diaconis, who immediately recognized that the probability distribution in (22) is

essentially a “negative hypergeometric distribution,” except that its values are shifted by s. Furthermore,
the negative hypergeometric distribution is a special case of the “beta-binomial distribution,” which is very
pleasant. Namely, we can generate a random variable Xm,n,s with distribution (22) in the following simple
and intuitive way: (i) Set p ← Un,s+1; (ii) flip n coins whose probability of heads is p; (iii) Set Xm,n,s ← s
plus the number of heads that turned up in step (ii).

Persi also mentioned another nice property of distribution (22): In slight disguise, it already appears in
my book [8], where Pólya’s famous “urn model” is described on pages 6 and 7. If we start Pólya’s process
with s+1 red balls and n− s black balls, the probability that have have exactly p red balls after m−n steps
is precisely f(p)/

(
m
n

)
. Furthermore, the number of red balls is a martingale with respect to the red density

ratio r/(r + b); it’s another way to see that the distribution has nice concentration properties.
Unfortunately I don’t see how to use any of those beautiful facts to prove a good upper bound on

m · Pr(Xm,n,s ≤ (1− ε)sm/n) that is uniform in the unknown quantity n.
Furthermore, I have only rudimentary ideas about how to account for the observed fact that the quantity

qπ,s in (18) tends to be very near s. Algorithm D gets into a very interesting “steady state” after the last
time it changes the current value of p.

I did succeed in analyzing Algorithm D’s exact behavior with respect to one interesting class of streams
with n = 2 and s = 1. (See exercise 11 below.) But I must now put these questions aside and go back to
work on what I should have been doing during the past month, namely the preparation of a sequel to [7]
and [8]. I fervently hope that somebody else will be able to come up with a better analysis of Algorithm D.

I’m extremely grateful to Persi Diaconis, Svante Janson, and Kuldeep Meel for informative discussions
of these issues and for correcting errors in my early drafts.

• Exercises. The following exercises have “rating numbers” as in The Art of Computer Programming.

1. [18] Find the exact distribution of Algorithm D’s output when it’s applied with s = 1 to the streams
(a1, a2, a3) for which (i) a1 = a2 �= a3 and (ii) a1 �= a2 = a3. What formulas correspond to (3) and (7) in
those cases?

2. [20] Is it possible for Algorithm D to return the estimate 0, when m = 5 and s = 2?

3. [HM25] Let the random variable X be the output of Algorithm D when all m elements of the stream
are distinct. We know that EX = m. What is the variance of X , as a function of s, when 1 ≤ s ≤ m?

4. [20] Would Algorithm D still be valid if step D1 said ‘p← 1/2’ instead of ‘p← 1’?

5. [21] Suppose every element at of the input stream is an integer in the range 1 ≤ at ≤ n, and let w1,
. . . , wn be any weights. Extend Algorithm D so that it returns an unbiased estimate of

∑
k∈A wk .

6. [HM20] Show that the variance of 1/Um,αm is (1− α)/(α3m) +O(1/m2), for fixed α < 1 as m→∞.

7. [20] True or false? Algorithm D always gives a perfectly correct answer, with absolutely no error
regardless of the random numbers it uses, if and only if s ≥ |A|.
8. [M22] Analyze the exact behavior of Algorithm D′ when it is applied with s = 1 to the stream of distinct
elements (a, b, c). What is the probability that it outputs 0? What is the probability that it outputs 2q?

9. [24] Experiment with Algorithm D′ on stream A1. What results do you get for s = 1, s = 10, s = 100,
s = 1000, s = 10000, and s = 100000, corresponding to Algorithm D’s (8), (9), (10), and (11)?

10. [M22] Given ε > 0, and δ > 0, and a stream length m, explain how to choose s so that Algorithm D’s
estimate is guaranteed to lie between (1 − ε)|A| and (1 + ε)|A|, except with probability δ. Illustrate your
method when m = 1000000 and δ = ε = 1/10.

11. [M36] Suppose the input stream (a1, . . . , am) is the alternating sequence (0, 1, 0, 1, . . . , (1+ (−1)m)/2),
for m > 1. When Algorithm M′ terminates, we always have p0 = 0 and p2 = · · · = pm−1 = m, because the
stream has only two distinct elements. The other value, r = p1, can have any value in the range 0 < r < m.
Three different scenarios can arise at the end:
• v0 ≥ r and v1 ≥ r. (The buffer is empty and the estimate is 0.)
• vam = q < r and v1−am ≥ r. (The buffer contains am, and the estimate is 1/Um,r+1.)
• vam ≥ r and v1−am = q < r. (The buffer contains am−1, and the estimate is 1/Um,r+1.)

Let em(r), am(q, r), and bm(q, r) be the number of permutations of {0, 1, . . . ,m − 1} that lead to each of
those respective scenarios. For example, the text’s analysis for m = 3 shows that e3(1) = 1, e3(2) = 0,
a3(0, 1) = a3(0, 2) = a3(1, 2) = 1, a3(0, 1) = 2, and b3(0, 2) = b3(1, 2) = 0.
a) Let am(r) = am(0, r), bm(r) = bm(0, r). Prove that am(q, r) = am(r) and bm(q, r) = bm(r) for 0 ≤ q < r.

[Consequently we have
∑m−1

r=1

(
em(r) + ram(r) + rbm(r)

)
= m!.]

b) Tabulate em(r), am(r), and bm(r) for 1 ≤ r < m ≤ 8. Look for patterns!
c) Explain why am(1) + · · ·+ am(m− 1) = bm(1) + · · ·+ bm(m− 1) = (m− 1)!.

d) Find “simple” formulas for em(r), am(r), and bm(r), given m and r. Hint: Consider
∑m−1

k=r am(k).

12. [HM41] Continuing exercise 11, what’s the asymptotic behavior of
∑m−1

r=1 em(r)/m!? (This is the prob-
ability that the estimate returned by Algorithm D for the alternating stream is zero.)

13. [M46] There are
{
m
2

}
= 2m−1 − 1 restricted growth sequences whose maximum element is 1; hence

there are
{
m
2

}
essentially different streams of length m that have only two distinct elements. Algorithm D

does a much better job on some of these streams than on others. (For example, the result of the trivial
stream (0, 0, . . . , 0, 1) is 1/Um,r+1 with probability r/

(
m
2

)
, for 1 ≤ r < m.)

Does the stream of exercise 11 lead to the worst estimates, in some sense, of all 2-element streams?

14. [HM30] What is the generating function
∑

p f(p)z
p for the shifted negative hypergeometric probability

distribution (22)?

15. [M20] Suppose n is a multiple of 25. Alice makes n tosses of a 1
2 -coin (a “fair coin”); she’s unlucky

if she gets fewer than .48n heads. Bob makes n tosses of a 1
4 -coin; he’s unlucky if he gets fewer than .24n

heads. Prove that Pr(Bob is unlucky) > Pr(Alice is unlucky)/2.

16. [M46] Can the result of exercise 15 be improved to Pr(Bob is unlucky) > Pr(Alice is unlucky)? More
generally, if p > q, is it more probable to have fewer than (1− ε)nq heads with a q-coin than (1− ε)np heads
with a p-coin?

• Appendix. The procedure originally presented in [2] was the following.

Algorithm X (Distinct element estimation). Given an arbitrary data stream (a1, a2, . . . , am) and a buffer
size s ≥ 2 as described above, this algorithm either returns an estimate of |A| = |{a1, a2, . . . , am}| or reports
failure. It uses a buffer B that’s capable of holding up to s elements of the stream.

X1. [Initialize.] Set t← 0, p← 1, and B ← ∅.
X2. [Done?] Terminate if t = m, returning the estimate |B|/p.
X3. [Input a.] Set t← t+ 1 and a← at, the next element of the stream.

X4. [Remove a from B.] If B contains the element a, delete it.

X5. [Maybe put a in B.] Let u be a uniform deviate, independent of all others (namely a random real
number in the range 0 ≤ u < 1). If u < p, insert a into B.

X6. [Ensure |B| < s.] If |B| = s, do the following: Throw away each element of B with probability 1/2; set
p← p/2; and terminate with failure if we still have |B| = s. Then go back to step X2.

This algorithm is appealing at first sight; but unfortunately it’s biased!
Consider, for example, the case when s = 2 and the input stream (a, b, c) has just m = 3 distinct

elements. After we’ve input the first two elements we get to step X6 with B = {a, b}; thus |B| = s. The
“remedy” for a full buffer has four possible outcomes, each of which will hold with probability 1/4: Either

• B = ∅, p = 1/2; or
• B = {a}, p = 1/2; or
• B = {b}, p = 1/2; or
• failure has occurred.

Now consider the scenarios that are possible after Algorithm X has either input the third element, c,
and terminated normally, or failed.

• B = ∅, p = 1/2, estimate 0; this holds with probability 1/8.
• B = {a}, p = 1/2, estimate 2; this holds with probability 1/8.
• B = {b}, p = 1/2, estimate 2; this holds with probability 1/8.
• B = {c}, p = 1/2, estimate 2: this holds with probability 1/8.
• B = ∅, p = 1/4, estimate 0; this holds with probability 1/16.
• B = {a}, p = 1/4, estimate 4; this holds with probability 1/32.
• B = {b}, p = 1/4, estimate 4; this holds with probability 1/32.
• B = {c}, p = 1/4, estimate 4; this holds with probability 1/16.
• Failure has occurred; this holds with probability 1/4 + 1/16.

The expected value of the estimate, given that failure has not occurred, is therefore 5
4/

11
16 = 20

11 , not 3.
Indeed, Algorithm X thinks that c is more likely to be in the stream than a or b. In general when

m = s + 1 and the stream has distinct elements, the set B is more likely to contain the last element than
any of the others, because we know that at least one of the others is missing.

However, if we change step X6 by saying “While |B| = s” instead of “If |B| = s,” and if we never
terminate with failure, it’s not difficult to see that the resulting algorithm has become unbiased. Indeed, it
is then equivalent to Algorithm D′, but with s changed to s+ 1.

The minor slip noted here does not invalidate the proof of the main theorem in [2]. Indeed, I have
essentially used the theory that was pioneered in that paper as the basis for the proof of Theorem T above.

• References.
[1] Cecilia R. Aragon and Raimund G. Seidel, “Randomized search trees,” IEEE Symposium on Foundations

of Computer Science 30 (1989), 540–545. Subsequently expanded into a journal article by R. Seidel and
C. R. Aragon, “Randomized search trees,” Algorithmica 16 (1996), 464–497.

[2] Sourav Chakraborty, N. V. Vinodchandran, and Kuldeep S. Meel, “Distinct elements in streams: An
algorithm for the (text) book,” 30th Annual European Symposium on Algorithms (ESA 2022), 39:1–39:6.
Published by Leibniz International Proceedings in Informatics, at Schloss Dagstuhl. See arXiv:2301.10191
[cs.DS] for subsequent versions.

[3] Norman L. Johnson, Adrienne W. Kemp, and Samuel Kotz, Univariate Discrete Distributions. Third
edition (Hoboken, New Jersey: Wiley Interscience, 2005), xix + 646 pp.

[4] Donald E. Knuth, Fundamental Algorithms, Volume 1 of The Art of Computer Programming. Third
edition (Reading, Massachusetts: Addison–Wesley, 1997), originally xx + 650 pp.; xx + 652 pp. since 2011.

[5] Donald E. Knuth, Sorting and Searching, Volume 3 of The Art of Computer Programming. First edi-
tion (Reading, Massachusetts: Addison–Wesley, 1973), xii + 722 pp. + foldout illustration. Second edition
(Reading, Massachusetts: Addison–Wesley, 1998), originally xiv + 780 pp.; xiv + 782 pp. since 2011.

[6] Donald E. Knuth, The Stanford GraphBase: A Platform for Combinatorial Computing. (New York:
ACM Press, 1994), viii + 576 pp.

[7] Donald E. Knuth, Combinatorial Algorithms, Part 1, Volume 4A of The Art of Computer Programming
(Upper Saddle River, N. J.: Addison–Wesley, 2011), xvi + 883 pp.

[8] Donald E. Knuth, Combinatorial Algorithms, Part 2, Volume 4B of The Art of Computer Programming
(Boston, Massachusetts: Addison–Wesley, 2023), xviii + 714 pp.

[9] Donald E. Knuth, http://cs.stanford.edu/~knuth/programs/cvm-estimates.w. (A literate program
written in CWEB, May 2023.)

[10] Jean Vuillemin, “A unifying look at data structures,” Communications of the ACM 23 (1980), 229–239.

• Answers to the Exercises.

1. (i) 1/U3,3 or 1/U3,3 or 1/U3,3 or 1/U3,2 or 1/U3,3 or 1/U3,2. Expected estimate 1
6

(
3
2 +

3
2+

3
2+3+ 3

2 +3
)
.

(ii) 1/U3,2 or 1/U3,2 or 0/U3,2 or 1/U3,3 or 1/U3,2 or 1/U3,3. Expected estimate 1
6

(
3 + 3 + 0 + 3

2 + 3 + 3
2

)
.

2. Yes. For instance, assume that a1, a2, and a3 are distinct but a4 = a1 and a5 = a2. Then if u1 < u2 <
u3 < u4 < u5, the buffer doesn’t receive (a3, u3) at time 3; it loses (a1, u1) at time 4, and (a2, u2) at time 5.

(There are many other instances. For example, let a4 = a2, a5 = a3, and u2 < u3 < u1 < u5 < u4.)

3. The final value of |B| will always be s, and the final value of p will always be the (s + 1)st smallest of
the uniform deviates {u1, . . . , um} used in step D5. Therefore X is the random variable s/Um,s+1.

Of course EX = m, by (6). We also have E (1/U2
m,k) = k

(
m
k

) ∫ 1
0 tk−3(1 − t)m−kdt = m(m − 1)/

((k − 1)(k − 2)). Hence var(X) = EX2 − (EX)2 = s2m(m− 1)/(s(s− 1))−m2 = m(m− s)/(s− 1).

4. Yes, because the proof of Lemma M would still be correct. But the estimates might be substantially
less accurate. For example, if m = 1, it would estimate |A| = 0 or |A| = 2, each with probability 1/2.

On the other hand, if the value of p in the unmodified algorithm ever becomes ≤ 1/2, this modification
to step D1 has absolutely no effect on the final result that’s returned in step D2 (again because of Lemma M)!
Furthermore, the final value of p will almost surely be ≤ 1/2 when s/|A| is less than 1/2 and m is large,

5. When t = m in step D2, return the estimate
∑{wk | (k, u) ∈ B for some u}/p. (This extension is valid

because of Lemma M: Any given key k is in B with probability p.)

6. The exact variance of 1/Um,k (see answer 3) is m(m−1)/((k−1)(k−2))−(m/(k−1))2 = m(m−k+1)/
((k − 1)2(k − 2)). Replace k by αm.

7. Let n = |A|. The estimate is clearly exact when s ≥ n. But if s < n, the value of ps computed by
Algorithm M′ is at most the maximum of n volatilities va, each of which is less than m. Hence ps < m, and
Xs is not always equal to n.

8. Infinitely many scenarios are possible, depending on howmany halvings k were performed when element b
was processed and how many halvings l were performed when element c was processed: case Zk, p = 1/2k,
buffer empty; case Ak, p = 1/2k, buffer contains a; case Bk, p = 1/2k, buffer contains b; case Ck, p = 1/2k,
buffer contains c. The first three occur with probability 2−2k − 2−3k; the latter with probability 2−3k.
There also are six cases that each have p = 1/2k+l and occur with probability 2−3k−2l: case AkZl, buffer
empty; case AkAl, buffer contains a; case AkCl, buffer contains c; case BkZl, buffer empty; case BkBl, buffer
contains b; case BkCl, buffer contains c.

So the estimate is 0 with probability
∑

k>0

(
2−2k − 2−3k + 21−3k

∑
l>0 2

−2k
)
= 2

7 . And it’s 2q with

probability 2(2−2q − 2−3q) + 4
∑q−1

k=1 2
−3k−2(q−k) = 21−2q − 2−3q + 22−2q − 23−3q.

[This exercise corresponds to the situation studied in the Appendix, after step X6 has been modified to
make Algorithm X unbiased.]

9. 0, 0, 524288, 1048576, 1048576, 2097152, 2097152, 2097152, 4194304;
589824, 786432, 786432, 786432, 917504, 1048576, 1179648, 1179648, 1835008;
720896, 819200, 851968, 884736, 884736, 933888, 983040, 999424, 999424;
921600, 941056, 942080, 945152, 948224, 953344, 962560, 965632, 970752;
944000, 944256, 944640, 945280, 945792, 948480, 948736, 951936, 954112;
945376, 951568, 951600, 952048, 952496, 953392, 955456, 955872, 956096.

10. Suppose δ = δ1 + δ2 + δ3. Corollary T tells us that it suffices to have

s+ 1 ≥ max
{8 + 4ε

ε2
ln
(
1 +

1

δ1

)
, 6 ln

m

δ2
,

1

ln 2
ln

m

δ3

}
.

We want to choose α1, α2, α3 so that the maximum is small when δ1 = α1δ, δ2 = α2δ, δ3 = α3δ, and
α1 + α2 + α3 = 1.

For example, with the suggested parameters we want to minimize

max{840 ln(1 + 10/α1), 6(16.12− lnα2), 1.443(16.12− lnα3)}
= max{840 ln(1 + 10/α1), 96.7− 6 lnα2, 23.25− 1.443 lnα3}

subject to α1 + α2 + α3 = 1. It’s pretty clear that we want α1 to be quite near 1. Indeed, there’s a
good chance we can make the maximum come out to be �840 ln 11� = 2015. Sure enough, if we choose
ln(1/α2) ≈ 1

6 (2015− 96.7) ≈ 319.7 and ln(1/α3) ≈ ln 2(2015− 23.25) ≈ 1380.6, so that the second and third
components are 2015, we get α1 = 1−α2−α3 > 1− e−319; hence 840 ln(1+10/α1) ≈ 2014.23. We therefore
choose s = 2014.

11. (a) This follows by induction on m, considering um’s relative order among the other uk.

(b) em(r) am(r) bm(r)
r=1 r=2 r=3 r=4 r=1 r=2 r=3 r=4 r=5 r=1 r=2 r=3 r=4

m=2 0 0 0 0 1 0 0 0 0 1 0 0 0
m=3 1 0 0 0 1 1 0 0 0 2 0 0 0
m=4 6 0 0 0 2 4 0 0 0 4 2 0 0
m=5 30 8 0 0 6 14 4 0 0 12 12 0 0
m=6 168 96 0 0 24 60 36 0 0 48 60 12 0
m=7 1080 864 108 0 120 312 252 36 0 240 336 144 0
m=8 7920 7680 2160 0 720 1920 1824 576 0 1440 2160 1296 144
m=9 65520 72000 30240 2304 5040 13680 14400 6624 576 10080 15840 11520 2880

Notice that em(r) = 0 ⇔ r ≥ �m/2�; am(r) = 0 ⇔ r > �m/2�; bm(r) = 0 ⇔ r > �m/2	.
(c) The expected contribution of element am to the final estimate is

E(am(1)/Um,2 + 2am(2)/Um,3 + · · ·)/m! = (am(1)m/1 + 2am(2)m/2 + · · ·)/m! =

m−1∑
r=1

am(r)/(m− 1)!,

and this is 1 because the estimate is unbiased. The same argument works for
∑

bm(r), which accounts for
the expected contribution of the other element, am−1 = 1− am.

(d) From
∑m−1

k=r am(r) = (m − r)!(m − r)r−1 and
∑m−1

k=r bm(r) = bm(r) = (m − r)!(m − r − 1)r−1, we
know am(r) and bm(r). Also em(r) + ram(r) + rbm(r) = bm+1(r) tells us the value of em(r).

12. (The probability is 82.8% when m = 100 and 87.7% when m = 200.) (Incidentally, the expected value
of r can be shown to be 1

2

√
πm+O(1).)

13. (Every nonconstant stream with m > 1 and s = 1 has positive probability of outputting the estimate
1/Um,2, because there are permutations in Algorithm M′ with ut = 0 and ut+1 = 1, for any t with at �= at+1.
And the variance of 1/Um,2 is infinite. So we can’t just rank streams by the variance of their estimates. But
it seems reasonable to say that one stream is better than another if it has lower probability of outputting
1/Um,2; or, if equal in that sense, lower probability of outputting 1/Um,3; and so on.)

(It may also be true that the alternating stream maximizes the probability of a zero estimate.)

14. It’s zsF (n−m, s+1;n+1; 1−z), where F (a, b; c;w) is the hypergeometric function
∑

k≥0 a
kbkwk/(k! ck).

(See formula (6.11) in [3]. Section 6.2 of that book begins with an excellent history of the beta-binomial
distribution.)

15. Instead of flipping a 1
4 -coin, Bob can flip two fair coins, and say that he got heads if and only if they

both came up heads. And we can couple Bob’s first coin to Alice’s.
For concreteness, condition on the number of heads, h, obtained by Alice. Suppose n = 1000. If h ≥ 480,

Alice is lucky. So Pr(Bob is unlucky) ≥ 0 = Pr(Alice is unlucky). If h = 479, Alice is unlucky. Bob’s number
of heads is the result of flipping 479 fair coins; he’s unlucky if and only if this number is 239 or less. And
that happens with probability 1/2.

If h < 479, Bob’s chance of getting at most 239 coins with h fair flips is greater than 1/2.
Now sum on h. A similar argument works when n = 25q for any q.

16. The answer to the first question is certainly yes, because computation shows that the actual ratios
of the quantity Pr(Bob is unlucky)/Pr(Alice is unlucky) are respectively 1.0964, 1.13609, 1.17049, 1.20227,
1.23248, 1.26169, . . . for n = 25, 50, 75, 100, 125, 150, . . . ; and they continue to increase. But is there a
simple way to prove such an intuitively obvious fact rigorously?

