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This is a story about a beautiful array of numbers that arises in an astonishing number of interesting
combinatorial contexts. It’s a counterexample to the hypothesis that all of the important “special numbers”
were discovered long, long ago—because the earliest known appearance of this particular array was in 1997.
It has, however, been rediscovered several times since then.

The numbers in question, which we shall call Bm,n in this note, begin as follows:

Bm,n n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

m = 0 1 1 1 1 1 1 1 1
m = 1 1 2 4 8 16 32 64 128
m = 2 1 4 14 46 146 454 1394 4246
m = 3 1 8 46 230 1066 4716 20266 85310
m = 4 1 16 146 1066 6902 41506 237686 1315666
m = 5 1 32 454 4718 41506 329462 2441314 17234438
m = 6 1 64 1394 20266 237686 2441314 22934774 202229266
m = 7 1 128 4246 85310 1315666 17234438 202229266 2193664790

(0.1)

Notice that we have diagonal symmetry, Bm,n = Bn,m, throughout this table.
The sequences for m = 0 and m = 1 are familiar. When m = 2 the sequence isn’t so well known,

although it turns out that Euler mentioned those numbers in Section 216 of the calculus book [10] that he
published in 1748. Then when m = 3 the array begins to break new ground; the historic number 1066 must
be there just by coincidence.

In this note we’ll see that Bm,n is the number of combinatorial configurations of many different kinds.
For example, it’s the number of ways to assign directions to the edges of the complete bipartite graph
Km,n, in such a way that no oriented cycles arise. It’s also the number of permutations p1p2 . . . pm+n of
{1, 2, . . . ,m + n} for which we have k −m ≤ pk ≤ k + n, for all k. It’s the number of binary relations �
between a variable x ∈ {1, . . . ,m} and a variable y ∈ {1, . . . , n} such that x � y and x′ � y′ implies
max(x, x′)� max(y, y′). And so on(!).

Furthermore, we’ll see that there are relatively simple bijections (one-to-one correspondences) between
the objects of each kind: Acyclic orientations correspond to classes of permutations, which correspond to
classes of relations, etc. The techniques of contriving such bijections are in fact interesting in themselves.

A new kind of pattern, which we shall call a “parade” ofm girls and n boys, turns out to be a particularly
insightful way to understand the combinatorial configurations that are enumerated by the numbers Bm,n.

A few exercises have been included for self-study, with answers at the end.

1. Definitions. Our story begins with Masanobu Kaneko’s paper [1], which introduced a nice generalization
of the classic Bernoulli numbers: Let B

(s)
n be the sequence of coefficients defined by the formal infinite series∑

n≥0

B(s)
n

zn

n!
=

1

1− e−z

∑
k≥1

(1− e−z)k

ks
, (1.1)

where s is any complex number. Kaneko called B
(s)
n a poly-Bernoulli number, because B

(1)
n is the famous

sequence published by Jakob Bernoulli in 1713 (with B
(1)
1 = +1/2), and because

∑
k≥1 z

k/ks is called the
polylogarithm function Lis(z). Indeed, when we set s = 1 in (1.1) we get the ordinary logarithm, and the
right-hand side simplifies to

ln
(
1/(1− (1− e−z))

)
1− e−z

=
z

1− e−z
= 1 +

z

2
+
z2

12
−

z4

720
+ · · · , (1.2)

which is the exponential generating function that defines non-poly Bernoulli numbers. The name ‘poly-
Bernoulli’ is a bit of a jawbreaker; let’s refer to B

(s)
n as a ‘pB number’, for short.

Kaneko was motivated purely by considerations of abstract number theory, without any hint of appli-
cations to combinatorics. The main question that he put to himself at the time was to determine the prime
factorization of the denominator of B

(2)
n , because he knew that the analogous question for B

(1)
n has a very

interesting answer. (See, for example, exercise 6.54 in [5].)
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Students of generatingfunctionology know that one of the most important formulas is

(ez − 1)m

m!
=
∑
n≥0

{ n

m

}zn
n!

, (1.3)

the exponential generating function for Stirling partition numbers
{
n
m

}
when m is fixed. (See, for instance,

Eq. (7.49) in [5].) Plugging this into (1.1) yields

∑
n≥0

B(s)
n

zn

n!
=
∑
k≥0

(1− e−z)k

(k + 1)s
=
∑
k≥0

k!
(−1)k

(k + 1)s

∑
n≥0

{n
k

} (−z)n
n!

;

so we have an explicit way to express every pB number as a sum:

B(s)
n =

∑
k≥0

k!
{n
k

} (−1)n+k
(k + 1)s

. (1.4)

One consequence of this formula is that B
(s)
n turns out to be an integer whenever s is a negative integer.

(On the other hand, B
(s)
1 = 2−s is noninteger whenever s > 0.) In fact, the array (0.1) is obtained in this

way when s = −m: We define

Bm,n = B(−m)
n =

∑
k≥0

(−1)n+kk!
{n
k

}
(k + 1)m . (1.5)

For example, the special case

Bm,2 = −
{
2
1

}
2m + 2

{
2
2

}
3m = 2 · 3m − 2m (1.6)

gives the numbers 1, 4, 14, 46, . . . that appear in the column for n = 2 in (0.1).
But wait a minute. Formula (1.5) sure doesn’t look symmetrical in m and n; yet we know from Table

(0.1) that Bn,m is actually equal to Bm,n, at least when m and n are small. Such all-pervasive symmetry
simply cannot be a fluke! And indeed, there’s an elegant way to verify that symmetry does hold, for all
m and for all n, by examining a bivariate generating function, G(w, z) =

∑
m,n≥0Bm,n

wm

m!
zn

n! , namely the
generating function for Bm,n that is simultaneously exponential in both parameters.

G(w, z) =
∑
m≥0

wm

m!

∑
n≥0

Bm,n
zn

n!
=
∑
m≥0

wm

m!

∑
k≥0

(1− e−z)k(k + 1)m =
∑
k≥0

(1− e−z)ke(k+1)w

= ew
∑
k≥0

(ew − ew−z)k =
ew

1− (ew − ew−z)
=

ew

ew−z + 1− ew
.

We have proved that the bivariate generating function is nicely symmetric in w and z:

G(w, z) =
ew+z

ew + ez − ew+z
. (1.7)

Things are looking up, because we can now deduce a symmetrical way to compute Bm,n, in place of the
unsymmetrical (1.5). We can write

G(w, z) =
ew+z

1− (ew − 1)(ez − 1)
=
∑
k≥0

ew(ew − 1)k(ez − 1)kez; (1.8)

so we’d like to understand the generating function ew(ew − 1)k. (See [21].) The derivative of (1.3) with
respect to z reveals the answer to that question:

ez(ez − 1)m

m!
=
∑
n≥0

{ n+ 1

m+ 1

}zn
n!

. (1.9)
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Consequently we have

∑
m,n≥0

Bm,n
wm

m!

zn

n!
= G(w, z) =

∑
k≥0

(
k!
∑
m≥0

{m+ 1

k + 1

}wm

m!

)(
k!
∑
n≥0

{n+ 1

k + 1

}zn
n!

)
. (1.10)

And by equating the coefficients of wmzn on each side, we obtain the symmetric formula that we seek,

Bm,n =
∑
k≥0

k!2
{m+ 1

k + 1

}{n+ 1

k + 1

}
. (1.11)

For example, B3,4 = 0!2
{
4
1

}{
5
1

}
+1!2

{
4
2

}{
5
2

}
+2!2

{
4
3

}{
5
3

}
+3!2

{
4
4

}{
5
4

}
= 1·1·1+1·7·15+4·6·25+36·1·10 = 1066.

2. A combinatorial interpretation. So far we’ve been happily manipulating algebraic formulas, without
regard to what those formulas might actually mean. But the Stirling partition numbers

{
n
m

}
do have a simple

meaning: They’re the number of ways to partition a set of n elements into m disjoint nonempty subsets.

Of course the coefficients of zn/n! in the exponential generating function ez − 1 have an even simpler
meaning: They’re the number of ways to give n labels to a nonempty set with n elements, namely n! when
n > 0 but 0 when n = 0.

The “symbolic method” of combinatorial enumeration now explains why (1.3) is true: When n elements
are partitioned into m disjoint nonempty subsets S1, . . . , Sm, the number of ways to label the elements of
those labeled subsets has the exponential generating function (ez − 1)m. And we divide by m!, because all
permutations of {S1, . . . , Sm} give the same set partition. (See, for instance, the elegant exposition of the
“symbolic method” in [7], formulas II-(13) and II-(14).)

Similarly, (1.9) tells us that m!
{
n+1
m+1

}
is the number of ways to partition an n-element set into disjoint

subsets {S0, S1, . . . , Sm}, where S0 might be empty but the other sets S1, . . . , Sm must be nonempty. It’s
true because we can add an (n+ 1)st “dummy” element, then find all

{
n+1
m+1

}
partitions of the extended set

into m + 1 nonempty blocks, afterwards letting S0 be the elements that belong to the same block as the
dummy element.

(Equivalently, there are m!
{
n+1
m+1

}
ways to choose m disjoint nonempty subsets of an n-element set,

without necessarily covering all n elements. The uncovered elements are S0.)

OK then, what does the nice symmetrical formula (1.11) mean? Its term for k comes from the term
ew(ew−1)k(ez−1)kez in (1.8). Therefore we can interpret it as the number of ways to present an m-element
set S as a disjoint union S = S0∪S1∪· · ·∪Sd and an n-element set T as a disjoint union T = T1∪· · ·∪Td∪Td+1,
where S0 and/or Td+1 might be empty but the other subsets must be nonempty.

That sounds pretty abstract. Fortunately there’s a much more concrete way to describe the same setup,
which we shall call a “girls and boys parade.” There are m girls {g1, . . . , gm} and n boys {b1, . . . , bn}, where
gi is younger than gi+1 and bj is younger than bj+1, but we know nothing about the relative ages of gi and bj .
In how many ways can they all line up in a sequence such that no girl is directly preceded by an older girl
and no boy is directly preceded by an older boy?

The answer is Bm,n. For example, here are the B2,2 = 14 possible parades of two girls and two boys:

g1g2b1b2, g1b1g2b2, g1b1b2g2, g1b2g2b1, g2b1g1b2, g2b1b2g1, g2b2g1b1,

b1g1g2b2, b1g1b2g2, b1g2b2g1, b1b2g1g2, b2g1g2b1, b2g1b1g2, b2g2b1g1. (2.1)

To see why this works in general, we merely need to notice that every parade can be written in the form
S0T1S1 . . . TdSdTd+1, where S0 ∪ S1 ∪ · · · ∪ Sd is a disjoint union of the girls and T1 ∪ · · · ∪ Td ∪ Td+1 is a
disjoint union of the boys; S0 and/or Td+1 might be empty, but the other subsets are nonempty; girls and
boys within a subset appear from youngest to oldest. The value of d is the number of times a boy is directly
followed by a girl, and we say that d is the order of the parade. (The respective values of d in (2.1) are 0,
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2.)
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In this note we shall let Pm,n be the set of all possible parades that can be formed by m labeled girls
and n labeled boys. Of course P2,2 is too small to give a feeling for parades in general; here’s a more typical
example, taken more or less at random from P16,20:

Π = b6b13g2g4b5b16g7b15g1g10g16b10g3b2b7b14g5g9g11b8b9b18b20g8b3b4g14b17g12b11g6g13g15b1b12b19 . (2.2)

It’s a parade of order 9.

Inside a computer, there’s a nice way to represent a parade as two digit strings s0s1 . . . sm and t0t1 . . . tn:
Girl gi belongs to set Ssi and boy bj belongs to set Ttj . Thus s0 = t0 = 0, and the other digits are between
0 and d; every digit from 1 to d occurs at least once. For example, the parade Π in (2.2) is represented by
the digit strings

s0s1 . . . s16 = 03141592653589793 and t0t1 . . . t20 = 005772156649015328606 (2.3)

(so you might guess that it’s not a truly random example).

A valid digit string can, in turn, be characterized by a permutation σ of [1 . . d] and a restricted growth

string Σ = a0a1 . . . am, where a restricted growth string has a0 = 0 and 0 ≤ ai+1 ≤ max{a0, . . . , ai} for
0 ≤ i < m. (Restricted growth strings are the method of choice for representing set partitions in programs;
see [23, §7.2.1.5].) The corresponding digit string has si = aiσ , where 0σ = 0. For example, the permutations
and restricted growth strings that correspond to (2.3) are

(σ = 314592687, Σ = 01232456741485951) and (τ = 572164938, T = 001223415567041839505). (2.4)

Parades turn out to be quite delightful and instructive combinatorial patterns. The more one studies
them, the more one agrees with Harold Arlen, when he wrote “I love a parade” in 1932!

3. Ranking and unranking. The patterns of a finite combinatorial class A can always be listed in some
order: α0, α1, . . . , α|A|−1. This ordering, when described in high-falutin’ mathematical jargon, is a bijection

between A and the integers [0 . . |A|) = {0, 1, . . . , |A| − 1}. The process of looking at a given pattern αk and
discovering its index k in this correspondence is called ranking ; the inverse problem, which determines the
pattern αk when its index k is given, is called unranking.

For example, there are 2n binary n-tuples b1 . . . bn, where each bj is either 0 or 1. So there are 2
n! bijec-

tions between binary n-tuples and the numbers of the half-open interval [0 . . 2n). Most of those bijections are
pretty weird and unimportant. But one of them is quite natural and useful, namely to let b1 . . . bn correspond
to the integer whose representation in the binary number system is (b1 . . . bn)2. In particular, the 4-tuple
1101 has rank (1101)2 = 13; conversely, the 4-tuple α13 is 1101. (This bijection corresponds to lexicographic
order of the n-tuples. A similar one, where b1 . . . bn ↔ (bn . . . b1)2, corresponds to “colexicographic order.”)

Suppose A is the disjoint union A′ ∪ A′′ of classes whose rank functions are rank′ and rank′′. Then
|A| = |A′|+ |A′′|, and it’s natural to define

rank(α) =

{
rank′(α), if α ∈ A′;
|A′|+ rank′′(α), if α ∈ A′′.

(3.1)

Similarly, if A is representable as a Cartesian product A′ ×A′′, we have |A| = |A′| |A′′|, and we can define

rank((α′, α′′)) = rank′(α′)|A′′|+ rank′′(α′′). (3.2)

(This rule corresponds to lexicographic order, and to a mixed-radix number system with radices |A′| and
|A′′|.) Unranking is easy in both (3.1) and (3.2).

Our principal goal in this note is to discover useful bijections between many combinatorial classes A for
which |A| = Bm,n. In particular, we should be able to find a fairly natural bijection between Pm,n and the
integers [0 . . Bm,n).
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For example, what is the rank of the “typical” parade Π in (2.2)? To answer this question, we need to
know the ranks of the permutations and restricted growth strings σ, Σ, τ , and T in (2.4).

There are (9!)! ≈ 1.6 × 101859933 ways to rank the permutations of {1, 2, 3, 4, 5, 6, 7, 8, 9}; we shall
choose lexicographic order. Then ranks are readily computed from the “inversion table” C1 . . . C9, where
Cj = |{i | i > j and pi < pj}|. (See exercise 5.1.1–7 in [3].) Indeed, the formula

rank(C1 . . . Cn) = (( . . . ((C1(n− 1)) + C2)(n− 2) + · · · ) + Cn−1)1 + Cn =

n∑
j=1

Cj(n− j)! (3.3)

arises from the recurrence n! = n(n − 1)! using (3.2). The inversion tables for σ and τ are respectively
201140010 and 451021200; so their ranks turn out to be 81577 and 187258.

The basic recurrence for Stirling partition numbers,

{m+ 1

d+ 1

}
= (d+ 1)

{ m

d+ 1

}
+
{m
d

}
, (3.4)

is based on the fact that a partition of m girls into d+ 1 nonempty blocks either puts the oldest girl into a
(d + 1)-block partition of the younger ones or into a new block by herself. It leads via (3.1) and (3.2) to a
slick way to compute the rank r of any given restricted growth sequence a0a1 . . . an:

“ Set r ← d← 0, and do the following for j = 1, . . . , n:

If a[j] > d, set d← d+ 1 and r ← r + (d+ 1)
{

j
d+1

}
;

otherwise set r ← r + aj
{

j
d+1

}
.”

(3.5)

And we find rank(Σ) = 266642187, rank(T) = 29804164155016 according to this recipe.
Consequently, the rank of (2.2) turns out to be

∑8
k=0 k!

2
{

17
k+1

}{
21
k+1

}
+
(
(81577

{
17
10

}
+ 266642187)9!+ 187258

){
21
10

}
+ 29804164155016

= 7792164621781138538938687784201468, (3.6)

because that parade has order 9. (It’s about 0.167% of B16,20 = 4669695431937298929037253789504488502.)

Now let’s try unranking. We know from (0.1) that B4,7 = 1315666. What is the millionth parade that
can be formed with 4 girls and 7 boys? In other words, what parade of P4,7 has rank 999999, according to
the ranking scheme that we’ve just discussed?

The parades of order d are enumerated by the term for k = d in (1.11); and the numerical values of
those terms when (m,n) = (4, 7) are respectively 1, 1905, 96600, 612360, 604800, for d = 0, 1, 2, 3, and 4.

Thus 1 + 1905 + 96600 + 612360 = 710866 is the number of parades of orders 3 or less. But adding
another 604800 will take us over a million. So, in accordance with (3.1), we seek the parade that has rank
999999− 710866 = 289133 in the set of order-4 parades, of which there are 4!

{
5
5

}
4!
{
8
5

}
= 604800. In the

latter formula, 4!
{
5
5

}
enumerates the possibilities for the ordered partition S0S1S2S3S4 of the girls, and 4!

{
8
5

}
enumerates the possibilities for the ordered partition T1T2T3T4T5 of the boys. Numerically, 4! = 24,

{
5
5

}
= 1,

and
{
8
5

}
= 1050.

To get the rank-289133 pattern from 24 · 1 · 24 · 1050 possibilities in accordance with (3.2), we have

289133 = ((11 · 1 + 0) · 24 + 11) · 1050 + 383, (3.7)

using a mixed-radix system with radices 24, 1, 24, and 1050.
The millionth parade will have the form S0T1S1T2S2T3S3T4S4T5, according to our interpretation above.

Formula (3.7) tells us that the ordering of {S1, . . . , S4} should be the rank-11 permutation of {1, 2, 3, 4}; those
S’s should come from the rank-0 set partition of 5 girls into 5 parts; the ordering of {T1, T2, T3, T4} should
(by coincidence) be the rank-11 permutation of {1, 2, 3, 4}; and those T ’s should come from the rank-383 set
partition of 8 boys into 5 parts.
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In general, to get the rank-r permutation of {1, 2, . . . , n}, in lexicographic order, the recurrence n! =
n(n− 1)! leads to the following algorithm: “First set Cn+1−j ← r mod j and r ← �r/j	, for j = 1, 2, . . . , n.
Then, for j decreasing from n to 1, set pj ← 1+Cj , and increase pi by 1 for all i > j with pi ≥ pj .” For exam-
ple, when r = 11 and n = 4, we find C1C2C3C4 = 1210, and the permutation p1p2p3p4 turns out to be 2431.

How should we unrank set partitions into a given number of blocks? Rule (3.5) has an equally slick
counterpart, which finds the restricted growth string a0a1 . . . an that has a given rank r and a given maximal
element d:

“ Set i← d, and do the following for j = n, n− 1 . . . , 0:

If r < (i+ 1)
{

j
i+1

}
, set aj =

⌊
r/
{

j
i+1

}⌋
and r ← r mod

{
j

i+1

}
;

otherwise set aj ← i, r ← r − (i+ 1)
{

j
i+1

}
, and i← i− 1.”

(3, 8)

In particular, from the
{
5
5

}
= 1 set partitions when m = 4 and d = 4, we want the one for r = 0, which

has the restricted growth string a0a1a2a3a4 = 01234. (Hey, algorithms have to work in trivial cases too.)
We apply the permutation 2431 to this, obtaining 02431; that means G0 = {g0}, G1 = {g4}, G2 = {g1},
G3 = {g3}, and G4 = {g2}, except that we’re supposed to remove the “dummy” girl g0 from G0.

Proceeding similarly for the boys, the set partition of rank 383 when n = 7 and d = 4 turns out to have
the restricted growth string 01123242. Apply the boys’ permutation 2431, to get the digit string 02243414;
hence T1 = {b6}, T2 = {b1, b2}, T3 = {b4}, T4 = {b3, b5}, T5 = {b0}; and b0 is removed from T5, which is the
special set Td+1.

Ta da: The millionth parade with four girls and seven boys is defined by S0T1S1T2S2T3S3T4S4T5, so it is

b6g4b1b2g1b4g3b3b5b7g2 . (3.9)

Unfortunately, this example doesn’t illustrate the general case in which S0 and/or Td+1 are nonempty.
We do get an example with nonempty S0 if we interchange m and n, asking instead for the millionth parade
when m = 7 and n = 4. That one turns out to be

g5b1g6b4g1b3g3g7b2g2g4 ; (3.10)

it comes from the partition of rank 0 and the permutation of rank 5 for the boys, together with the partition
of rank 497 and the permutation of rank 11 for the girls.

The main advantage of a bijection between a combinatorial class A and the integers [0 . . |A|) is that
it allows us to generate uniformly random patterns from A. For example, given a random number in the
interval [0 . . Bm,n), we can compute the corresponding parade by performing O((m+n) log(m+n)) arithmetic
operations on numbers that have O((m + n) log(m+ n)) bits, using the procedure above.

It’s easy to understand the very first parade, according to this bijection: We set d = 0 and use the all-0 re-
stricted growth strings and the empty permutation for both girls and boys. The result is g1g2 . . . gmb1b2 . . . bn.

Similarly, the very last parade is only slightly more difficult to describe. Suppose m ≤ n. Then the
construction yields d = m; the restricted growth strings are 012 . . . d for the girls and 0n−m+112 . . . d for
the boys; both permutations are d . . . 21. Hence the final parade is bngmbn−1gm−1 . . . bn+1−mg1b1 . . . bn−m.
When m > n, it is g1 . . . gm−nbngmbn−1gm−1 . . . b1gm+1−n.

Notice that the ordering of the 14 parades in (2.1) does not correspond to our bijection. (They appear
there in lexicographic order, assuming that g1 < g2 < b1 < b2.) If we had listed them in the order of our
bijection, for ranks r = 0, 1, . . . , 13, the respective values of d would have been (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
2, 2, 2). That listing would in fact have been

g1g2b1b2, g2b1g1b2, g2b1b2g1, g2b2g1b1, b1g1g2b2, b1b2g1g2, b2g1g2b1,

g1b1g2b2, g1b1b2g2, g1b2g2b1, b1g1b2g2, b2g1b1g2, b1g2b2g1, b2g2b1g1. (3.11)

Every parade with 1 girl and n boys corresponds naturally to the subset of boys that precedes the girl.
When those parades are listed in order of rank, the subsets arise in the somewhat bizarre order

∅, {b1}, {b1b2}, {b2}, {b1b3}, {b1b2b3}, {b2b3}, {b3},

{b1b4}, {b1b2b4}, {b2b4}, {b1b3b4}, {b1b2b3b4}, {b2b3b4}, {b3b4}, {b4}, (3.12)

which corresponds to the permutation f(r) of positive integers defined by

f(2k + j) = 2k + f(j + 1) for 0 ≤ j < 2k − 1 and f(2k+1 − 1) = 2k, for all k > 0. (3.13)

The parades for m girls and 1 boy arise in essentially the same order, but with respect to the subsets of girls
that follow the boy: ∅, {g1}, {g1g2}, {g2}, {g1, g3}, etc.
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4. A recurrence for pB numbers. Taking a different tack, we can use the elegant bivariate generating
function G(w, z) in (1.7) to deduce an unexpected relationship between the numbers on adjacent rows of (0.1).
Notice first that differentiation with respect to w has a simple “shift-up” effect on the coefficients:

∂

∂w
G(w, z) =

∂

∂w

∑
m,n≥0

Bm,n
wm

m!

zn

n!
=

∑
m,n≥0

Bm,n
wm−1

(m− 1)!

zn

n!
=

∑
m,n≥0

Bm+1,n
wm

m!

zn

n!
. (4.1)

(In this formula, 1/(−1)! = 0.) Similarly, ∂
∂zG(w, z) =

∑
m,n≥0Bm,n+1

wm

m!
zn

n! . Furthermore

∂

∂w

ew+z

ew + ez − ew+z
=

ew+2z

(ew + ez − ew+z)2
= e−wG(w, z)2. (4.2)

We also have

G(w, z) =
1

e−z + e−w − 1
; (4.3)

whence it follows that
e−zG(w, z)2 + e−wG(w, z)2 −G(w, z) = G(w, z)2. (4.4)

By equating the coefficients of wmzn on both sides of this equation, we see that

Bm,n+1 +Bm+1,n −Bm,n =
(n
0

)
Bm,n+1 +

(n
1

)
Bm,n +

(n
2

)
Bm,n−1 + · · ·+

(n
n

)
Bm,1. (4.5)

Therefore the pB numbers can be computed row by row, using a recurrence that’s totally different from
any of our previous formulas:

B0,n = 1; Bm+1,n = Bm,n +
(n
1

)
Bm,n +

(n
2

)
Bm,n−1 + · · ·+

(n
n

)
Bm,1, (4.6)

valid for all m,n ≥ 0. For example,

B3,4 = B2,4+
(
4
1

)
B2,4+

(
4
2

)
B2,3+

(
4
3

)
B2,2+

(
4
4

)
B2,1 = 146+4 · 146+6 · 46+4 · 14+1 · 4 = 1066. (4.7)

(Masanobu Kaneko [8] derived the recurrence (4.6) shortly after he had discovered the pB numbers.)
OK, we know from algebra and calculus that the number of parades of girls and boys satisfies the

recurrence (4.6). Can we also find a purely combinatorial explanation for that fact?
Yes! There’s obviously only one possible parade when no girls are present; hence B0,n = 1. So suppose

we have a parade Π with m + 1 girls and n boys; we want to represent it uniquely as one of the parades
represented by the right-hand side of (4.6). We’ll say that Π ∈ Pm+1,n is of type T if T is the block of boys
that immediately follows the oldest girl, gm+1. For example, if m = 3, the parade in (3.9) has type {b1b2}.

The number of parades of type ∅ is Bm,n, because such parades arise if and only if gm+1 comes last;
conversely, gm+1 can safely be appended to any parade that has m girls.

Otherwise we shall show that the number of parades of type T is Bm,n+1−|T |; and this will establish

(4.6), because there are
(
n
t

)
types T with |T | = t. Let bμ be the oldest boy in T . Remove T \{bμ} from the set

of boys, and give the remaining boys the new names b′1, . . . , b
′
n−(t−1) (youngest to oldest). Then map Π �→ Π′

by renaming the boys, and by replacing the subsequence ‘gm+1T ’ of Π by b′μ−(t−1) (the new name of bμ).

We’ve thereby mapped every (m+ 1, n)-parade of type T �= ∅ into an (m,n+ 1− |T |)-parade; and the
mapping is clearly invertible. For example, if T = {b2b3b6}, the parade Π′ = b′1b

′
4b
′
5g1g4b

′
3g2b

′
2g5b

′
6g3 could

have come only from Π = b1b7g6b2b3b6g1g4b5g2b4g5b8g3. (Further explanation is below.)

5. A recursive ranking scheme. Now let’s turn the tables and assign ranks to objects that satisfy (4.6),
instead of assigning ranks to objects that are enumerated by (1.11) as we did in §3. Once again, every parade
in Pm,n will be assigned a number between 0 and Bm,n − 1 inclusive.

In accordance with the additive rule (3.1), we’ll give the smallest Bm,n ranks to parades of type ∅. The
next

(
n
1

)
Bm,n ranks in (4.6) will go to the parades enumerated by

(
n
1

)
Bm,n; and so on. In general the right-

hand side of (4.6) has n+1 terms, t0+ t1+ t2+ · · ·+ tn, where t0 = Bm,n and tk =
(
n
k

)
Bm,n+1−k when k > 0.
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If we’re unranking, the parade of rank r will belong to term tk, where k is found as follows: “Set k ← 0.
While r ≥ tk, set r ← r − tk and k ← k + 1.”

But let’s do ranking first. What is the recursive rank of the parade Π = b6g4b1b2g1b4g3b3b5b7g2 in (3.9),
whose rank was 999999 under the old scheme? This parade of type {b1b2} is mapped into

Π′ = b1b5g1b3g3b2b4b6g2 of type {b2b4b6}, which is mapped into

Π′′ = b1b3g1b2b4g2 of type ∅, which is mapped into

Π′′′ = b1b3g1b2b4 of type {b2b4}, which is mapped into

Π′′′′ = b1b2b3.

(5.1)

Consequently
rank(Π) = B3,7 +

(
7
1

)
B3,7 + 0B3,6 + rank(Π′);

rank(Π′) = B2,6 +
(
6
1

)
B2,6 +

(
6
2

)
B2,5 + 14B2,4 + rank(Π′′);

rank(Π′′) = rank(Π′′′);

rank(Π′′′) = B0,4 +
(
4
1

)
B0,4 + 4B0,3 + rank(Π′′′′);

rank(Π′′′′) = 0.

(5.2)

So rank(Π′′′) = 9, rank(Π′′) = 9, rank(Π′) = 18621, and rank(Π) = 701101. (The coefficients in ‘0B3,6’,
‘14B2,4’, ‘4B0,3’ come from ranking the types: The rank of {b1b2} among 2-subsets of {b1, . . . , b7} is 0; the
rank of {b2b4b6} among 3-subsets of {b1, . . . , b6} is 14; the rank of {b2b4} among 2-subsets of {b1, . . . , b4}
is 4. Formula (A.2) in the Appendix below explains how such ranks are readily computed.)

When the same method is applied to the “typical” parade (2.2), which is of type {b10}, we find that Π′

has type {b1b12b19}, Π′′ has type {b15} (where b15 was originally b17), and so on. The recursive rank turns
out to be 1491392338417882718739839722665904161, about 32% of B16,20. Middle of the road.

The recursive unranking procedure is another good test of these methods, so let’s study it next. What
is the millionth element of P4,7 according to this new ranking scheme? For that problem we have m = 3,
n = 7, and the terms (t0, . . . , t7) are (85310, 597170, 425586, 165130, 37310, 4830, 322, 8). Hence the parade
of rank r = 999999 leads to k = 2; it will be the parade of rank 999999− 85310− 597170 = 317519 that
corresponds to term t2 =

(
7
2

)
B3,6.

In accordance with the multiplicative rule (3.2), we now find 317519 = 15 ·B3,6+13529. Algorithm (A.1)
in the Appendix below tells us that the 2-subset of {b1, . . . , b7} that has rank 15 is {b1b7}. So we want the
parade of P3,6 that has type {b1b7} and rank 13529.

Let Πm,n,r be the parade of recursive rank r in Pm,n. We’ve just concluded that Π4,7,999999 is the parade
of type {b1b7} that maps to Π3,6,13529; we shall say that “Π4,7,999999 = Π3,6,13529 extended by {b1b7}.”

It turns out that, similarly,

Π3,6,13529 = Π2,5,139 extended by {b3b5};

Π2,5,139 = Π1,5,11 extended by {b4};

Π1,5,11 = Π0,4,0 extended by {b3b4}.

(5.3)

Now Π0,4,0 is b1b2b3b4. So we can go backward in (5.3) and determine

Π1,5,11 = b1b2b5g1b3b4 ;

Π2,5,139 = b1b2b5g1b3g2b4 ;

Π3,6,13529 = b1b2b6g1b4g2g3b3b5 ;

Π4,7,999999 = b2b3g4b1b7g1b5g2g3b4b6 .

(5.4)

The algorithm that leads from (5.3) to (5.4), which is somewhat delicate, is described in the Appendix
below. Incidentally, when girls and boys are reversed in this example, we find

Π7,4,999999 = g3b2b3g2g7b4g1g5g6b1g4 . (5.5)

(That computation involves extending Π3,4,847 by ∅.)
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Notice that this procedure leads to an interesting characterization: Every parade can be built up uniquely
by starting with a parade that has no girls and repeatedly extending it, adding one girl at a time. Each

nonempty extension from n′ boys to n boys is guided by an (n− n′ + 1)-element subset of {b1, . . . , bn}.

The fourteen parades of P2,2 are ranked in the following order by this recursive scheme, in contrast to
(2.1) and (3.11):

b1b2g1g2, b2g1b1g2, b1g1b2g2, g1b1b2g2, b2g2b1g1, b2g1g2b1, g2b1g1b2,

g1b2g2b1, b1g2b2g1, g2b2g1b1, b1g1g2b2, g1b1g2b2, g2b1b2g1, g1g2b1b2, (5.6)

In general, the first parade in this recursive ranking of Pm,n is clearly b1b2 . . . bng1g2 . . . gm, because we
start with all the boys and append all the girls, one by one.

The very last parade, on the other hand, is obtained when we extend the last parade of Pm−1,1 by
{b1, . . . , bn}. So it is g1g2 . . . gmb1b2 . . . bn.

When the 2n parades of P1,n are ranked recursively, the subsets of boys that follow the girl appear in
increasing order of their size, and in colexicographic order within each size. For example, the eight parades
of P1,3 are

b1b2b3g1, b2b3g1b1, b1b3g1b2, b1b2g1b3, b3g1b1b2, b2g1b1b3, b1g1b2b3, g1b1b2b3. (5.7)

It’s the same as the order of subsets made by the girls who precede the boy in Pn,1; for example,

b1g1g2g3, g1b1g2g3, g2b1g1g3, g1g2b1g3, g3b1g1g2, g1g3b1g2, g2g3b1g1, g1g2g3b1. (5.8)

6. Automorphisms. There are many one-to-one mappings of Pm,n into itself; in fact, the total number
is Bm,n!, which is huge. The vast majority of them are completely arbitrary and of no interest whatsoever.
But some of them are particularly important, because they’re “natural” and easy to understand. Indeed,
we obtain m!n! natural automorphisms by using any permutation σ1 . . . σm of [1 . .m] to rename the girls
and any permutation τ1 . . . τn of [1 . . n] to rename the boys; after replacing gj by gσj and bk by bτk , for all j
and k, adjacent girls and adjacent boys can bubblesort themselves and form a new parade.

For example, suppose m = 4, n = 7, σ1 . . . σ4 = 3142, and τ1 . . . τ7 = 5721643. Then the parade
b6g4b1b2g1b4g3b3b5b7g2 of (3.9) becomes b4g2b5b7g3b1g4b2b6b3g1 before sorting, and b4g2b5b7g3b1g4b2b3b6g1
afterwards.

Another straightforward automorphism reflects the parade, left-to-right. Then (3.9) becomes the pseudo-
parade g2b7b5b3g3b4g1b2b1g4b6 before sorting, and g2b3b5b7g3b4g1b1b2g4b6 afterwards.

Furthermore, the number of basic automorphisms increases by a further factor of 2!23!2 . . .min{m,n}!2

when we realize that we can specify, for each k, two independent permutations of [1 . . k] that can be applied
respectively to the blocks S1 . . . Sk and T1 . . . Tk that occur in parades of order k.

This multiplicity of automorphisms means that every bijection between Pm,n and another class of
combinatorial patterns leads to many further bijections. Some of those bijections will, of course, be much
more intuitive and/or interesting than others.

7. Acyclic bipartite orientations. It’s high time to fulfill the promise that was made in the introduction,
namely to discuss other combinatorial patterns that are enumerated by the pB numbers.

Let Om,n be the set of all ways to assign a direction to each of the mn edges of the complete bipartite
graph Km,n, in such a way that the resulting digraph has no oriented cycles.

It turns out that |Om,n| = Bm,n. For example, when m = n = 2, the four edges u1 −−− v1 −−− u2 −−−
v2 −−− u1 of K2,2 form a 4-cycle; and exactly two of the 16 ways to orient those edges will turn that cycle
into an oriented cycle. That leaves 14 = B2,2 acyclic orientations.

Indeed, there’s an appealing bijection between Pm,n and Om,n: We can associate the vertices of Km,n

with m girls in one part and n boys in the other. Given any parade in Pm,n, we orient the edge gi−−−bj by
simply saying that gi−−→bj if and only if bj follows gi in the parade. The resulting digraph is obviously acyclic.

Conversely, this mapping from Pm,n to Om,n is invertible. Given any acyclic orientation, we want to
show that it corresponds to a unique parade. At least one vertex must be a “source,” having no predecessor;
and the sources must either be all girls or all boys. Place all the sources first in the parade; remove them
from the digraph; and repeat the argument.
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Any orientation of Km,n can be represented conveniently as an m × n matrix aij of 0s and 1s, where
aij = 1 if and only if ui −−→ vj . For example, the acyclic orientation of K4,7 that corresponds under our
bijection to (3.9), the millionth parade of P4,7, is⎛

⎜⎝
0 0 1 1 1 0 1
0 0 0 0 0 0 0
0 0 1 0 1 0 1
1 1 1 1 1 0 1

⎞
⎟⎠ . (7.1)

It’s easy to reconstruct (3.9) from this. Hint: A girl source is a row of 1s; a boy source is a column of 0s.
(The fact that |Om,n| = Bm,n was discovered by Peter Cameron, Celia Glass, Kamilla Rekvényi, and

Robert Schumacher [12].)

8. Doubly bounded permutations. Let Vm,n be the set of all permutations p1p2 . . . pm+n of [1 . .m+n]
with the property that

j −m ≤ pj ≤ j + n for 1 ≤ j ≤ m+ n. (8.1)

Guess what? |Vm,n| = Bm,n. For example, when m = n = 2, the permutation p1p2p3p4 must have p1 �= 4
and p4 �= 1. Of the 24 possibilities, we must throw out the 6 with p1 = 4 and the 6 with p4 = 1; but we
threw 4231 and 4321 out twice, so exactly 14 = B2,2 remain.

The number of permutations that we seek is the permanent of a nicely structured (m + n) × (m + n)
matrix Qm,n, illustrated here for m = 4 and n = 7:

Qm,n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
Jm,n Sm

STn Jn,m

)
. (8.2)

Here Jm,n is an m × n matrix of all 1s; Sm is a lower-triangular m ×m matrix with 1s on and below the
diagonal, but with 0s above. The value of |Vm,n| = per(Qm,n) is the number of ways we can place rooks on
the 1s of Qm,n, with no two rooks in the same row or the same column.

Suppose we place k rooks in Jm,n, the submatrix at the upper left. Then m− k rooks must be placed
in Sm, and n− k rooks in STn . Consequently there are k rooks also in Jn,m.

And now—aha—the number of ways to place m− k nonattacking rooks on the 1s of Sm is exactly the
quantity

{
m+1
k+1

}
that appears in formula (1.1)! This remarkable fact, discovered by Irving Kaplansky and

John Riordan in 1946 [28], comes to us accompanied by a splendid bijection between the restricted growth
strings a0a1 . . . am with maximum element k and the placements of m − k rooks, discovered by Edward
Bender in 1969: If j > 0 and aj exceeds max{a0, . . . , aj−1}, we put no rook into row j; otherwise we place
a rook in column i+ 1 of row j, where i < j is maximum such that ai = aj . (See exercise 5.1.3–19 in [3].)

Bender’s bijection is illustrated for m = 3 and k = 1 in the following seven cases, where each possibility
for the rooks is shown above its corresponding restricted growth string:⎛

⎝� 0 0
1 � 0
1 1 1

⎞
⎠

0001

⎛
⎝� 0 0
1 1 0
1 � 1

⎞
⎠

0010

⎛
⎝� 0 0
1 1 0
1 1 �

⎞
⎠

0011

⎛
⎝ 1 0 0

� 1 0
1 1 �

⎞
⎠

0100

⎛
⎝ 1 0 0

� 1 0
1 � 1

⎞
⎠

0101

⎛
⎝ 1 0 0
1 � 0

� 1 1

⎞
⎠

0110

⎛
⎝ 1 0 0
1 � 0
1 1 �

⎞
⎠

0111

. (8.3)

Once we’ve place the rooks into Sm and STn , we’re left with k × k submatrices of Jm,n and Jn,m where
rooks can still be placed. Since the are k!2 ways to complete the job, we’ve proved that |Vm,n| is the sum
(1.11), which is Bm,n.
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In fact, this argument also provides us with a simple bijection. For example, we know that the millionth
parade (3.9) has the restricted growth sequence 01234 for the girls, together with the permutation 2431; and
it has the restricted growth sequence 01123242 for the boys, together with the permutation 2431. Using
Bender’s bijection, and transposing the boys’ placement in Sn in order to cover STn , the corresponding
rook placement in Q4,7 turns out to be

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 � 1 1 1 1 1 0 0 0
1 1 1 1 1 � 1 1 1 0 0
1 1 1 � 1 1 1 1 1 1 0

� 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 � 1 1
0 � 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 �

0 0 0 1 � 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 � 1
0 0 0 0 0 1 � 1 1 1 1
0 0 0 0 0 0 1 � 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.4)

(Instead of transposing the boys’ placement, we could have rotated it by 180◦; it’s unclear which alternative
is better.) Given the placements in (8.4), the millionth doubly bounded permutation in V4,7 is

p1 . . . p11 = 3 6 4 1 9 2 11 5 10 7 8 . (8.5)

Exercise 8.1. What permutation p1 . . . p36 of V16,20 corresponds to the “typical” parade (2.2) of P16,20?

(The number of permutations satisfying (8.1) was found in 1974 by Katalin Vesztergombi [17], who
actually solved a much more general problem, as we shall see below. Stéphane Launois [13] noticed in 2007
that her formula matches (1.5); his paper was apparently the first publication to point out that pB numbers
can have combinatorial significance. The bijection between Vm,n and Pm,n mentioned here is based on
L. Lovász’s solution to a similar problem; see [11], Problem 4.36.)

Notice, by the way, that the inverses of the permutations in Vm,n are the permutations in Vn,m, because
QT
m,n = Qn,m.

9. Weak-excedance-first permutations. Let Em,n be the set of all permutations q1 . . . qm+n for which
(i) qj ≥ j for 1 ≤ j ≤ m, and (ii) qj ≤ j for m < j ≤ m+ n. (Condition (i) is called a “weak excedance,” in
contrast to the condition ‘qj > j’, which is simply called an excedance. Condition (ii) is a “non-excedance.”)
For example, the elements of E2,2 are

1234, 1324, 1423, 1432, 2314, 2413, 2431, 3214, 3412, 3421, 4213, 4231, 4312, 4321. (9.1)

Such permutations were introduced by Beáta Bényi and Péter Hajnal [25, §3.2].
We can count them by evaluating the permanent of a suitable (m+ n)× (m + n) matrix, which looks

like this in the special case m = 4 and n = 7:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.2)
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Aha! It’s just a jumbled-up version of Qm,n in (8.2), containing STm, Jm,n, Jn,m, and Sn as submatrices.
Consequently every permutation q1 . . . qm+n of Em,n is in bijection with the permutation

p1 . . . pm−1pmpm+1 . . . pm+n−1pm+n = q̄m . . . q̄2q̄1q̄m+n . . . q̄m+2q̄m+1 (9.3)

of Vm,n, where q̄ = m+ n+ 1− q. By (8.5), the millionth weak-excedance-first permutation in E4,7 is

q1 . . . q11 = 11 8 6 9 4 5 2 7 1 10 3 . (9.4)

10. Lonesum matrices. The row sums R = (r1, . . . , rm) and column sums S = (s1, . . . , sn) of an m × n
matrix (aij), namely

ri =

n∑
j=1

aij and sj =

m∑
i=1

aij , (10.1)

are important in many applications, especially when all of the matrix entries aij are 0 or 1. Herbert Ryser [19]
found necessary and sufficient conditions for the existence of at least one 0–1 matrix whose row and column
sums match a given pair (R,S). He also showed that any two 0–1 matrices with the same (R,S) can be
transformed into each other by a sequence of “switches,” where every switch changes a 2×2 submatrix from(
1 0
0 1

)
to
(
0 1
1 0

)
or vice versa. (Such a switch clearly leaves all row and column sums unchanged.)

Therefore a 0–1 matrix is uniquely determined by its R and S sequences if and only if it is “
{(

1 0
0 1

)
,(

0 1
1 0

)}
-free”; that is, if and only if none of its 2× 2 submatrices have the forms

(
1 0
0 1

)
or
(
0 1
1 0

)
. For example,

the matrix (7.1) is
{(

1 0
0 1

)
,
(
0 1
1 0

)}
-free; so it’s the only one with R = (4, 0, 3, 6) and S = (1, 1, 3, 2, 3, 0, 3).

Let Lm,n be the set of all m × n matrices of 0s and 1s whose row and column sums determine them
uniquely. Chad Brewbaker [18], calling such matrices “lonesum,” proved that |Lm,n| = Bm,n. (His paper
was the second publication that presented pB numbers in a combinatorial context.)

We have almost proved his theorem already, because it’s easy to see that an orientation of a complete

bipartite graph is acyclic if and only if it has no oriented 4-cycle. For if the shortest oriented cycle has
length k, the value of k must be even; and we can assign labels to the vertices so that the cycle has the form

u1−−→v1−−→u2−−→v2−−→· · ·−−→uk/2−−→vk/2−−→u1. (10.2)

There’s a contradiction if k > 4, because both v2−−→u1 and u1−−→v2 would give a shorter cycle.
It follows that an m×n matrix of 0s and 1 is lonesum if and only if it is one of the matrices such as (7.1)

that describes an acyclic orientation of Km,n. (An oriented 4-cycle ui−−→vj−−→ui′ −−→vj′ −−→ui would show
up in the matrix as

(
1 0
0 1

)
or
(
0 1
1 0

)
in rows {i, i′} and columns {j, j′}.)

The bijection we used for Om,n therefore works also for Lm,n. The
{(

1 0
0 1

)
,
(
0 1
1 0

)}
-free matrix (7.1) is

the millionth lonesum matrix of L4,7. It is easily reconstructed from its row sums (4, 0, 3, 6) and column
sums (1, 1, 3, 2, 3, 0, 3).

(It’s not difficult to see that lonesum matrices are precisely the matrices that can be transformed by
row and column permutation to the Ferrers diagram for an integer partition, with all the 1s concentrated at
the top and left, because any permutation of R and/or S preserves lonesumness. In a Ferrers diagram, the
row and column sums appear in nonincreasing order, and they’re “conjugate” partitions of their sum.)

11. Strongly Γ-free matrices. A
{(

1 1
1 0

)
,
(
1 1
1 1

)}
-free matrix is called “strongly Γ-free,” because

(
1 1
1 0

)
looks

like the letter Γ and
(
1 1
1 1

)
is another matrix of the form

(
1 1
1 ∗

)
. We shall let Gm,n be the set of allm×nmatrices

of 0s and 1s that are strongly Γ-free, and (surprise?) we shall prove that |Gm,n| = Bm,n. It’s obvious that
|G2,2| = 14 = B2,2.

(The much larger class of
(
1 1
1 0

)
-free matrices, which was called simply “Γ-free” by Anna Lubiw [20],

also has important applications to combinatorial optimization. There are (n+ 3)3n−1 Γ-free matrices when
m = 2, and 1725320 of them when m = n = 5.)

The strong Γ-free constraint makes it easy to evaluate |Gm,n| by showing that recurrence (4.6) holds.
Clearly |G0,n| = 1 and |G1,n| = 2n, because a matrix with fewer than 2 rows has no 2× 2 submatrices.
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If we’re given an arbitrary matrix of Gm+1,n, suppose there are exactly t 1s in its top row. If t = 0, the
remaining m rows are a perfectly general matrix of Gm,n. Otherwise the first t − 1 of those 1s must have
nothing but 0s below them; and if we remove those t − 1 columns, we obtain a perfectly general matrix of
Gm,n+1−t. Recurrence (4.6) is valid because the 1s of the top row can appear in

(
n
t

)
columns.

It’s also easy to convert that argument to a bijection with parades. Let Γm,n,r be the strongly Γ-free
0–1 matrix of rank r, computed according to the recurrence. We simply let Γm,n,r correspond to Πm,n,r, the
parade of recursive rank r that was defined constructively in §5 above.

For example, the millionth matrix in G4,7 is Γ4,7,999999, which corresponds to Π4,7,999999. From (5.4),
we have

Γ1,5,11 = ( 0 0 1 1 0 ) ; Γ2,5,139 =

(
0 0 0 1 0
0 0 1 1 0

)
; Γ3,6,13529 =

⎛
⎝ 0 0 1 0 1 0
0 0 0 0 1 0
0 0 0 1 1 0

⎞
⎠ ;

Γ4,7,999999 =

⎛
⎜⎝
1 0 0 0 0 0 1
0 0 0 1 0 1 0
0 0 0 0 0 1 0
0 0 0 0 1 1 0

⎞
⎟⎠ . (11.1)

The boys that follow a particular girl in the parade correspond to 1s in a particular row of the matrix.
Conversely, we’ve seen that the millionth parade (3.9) has recursive rank 701101. So it corresponds to

Γ4,7,701101 =

⎛
⎜⎝
1 1 0 0 0 0 0
0 0 1 0 1 0 1
0 0 0 0 0 0 0
0 0 0 1 0 0 1

⎞
⎟⎠ , (11.2)

by the calculations in (5.1) and (5.2). These Gamma-avoiding matrices follow the recursion (4.6) so closely,
we can regard Γm,n,r as a natural way to represent the parade Πm,n,r.

Exercise 11.1. What parade corresponds to the following matrix of G4,7?⎛
⎜⎝
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0

⎞
⎟⎠

Exercise 11.2. What strongly Γ-free 16× 20 matrix corresponds to the “typical” parade Π of (2.2)?

Exercise 11.3. What’s the maximum number of 1s in an element of Gm,n?

(Bijections between Gm,n and parade-like arrangements were first constructed by Bényi and Hajnal [2],
then simplified by Bényi and Nagy [4]; but those bijections were more complicated than the one above.)

Notice, by the way, that strongly Γ-free matrices are also in bijection with “strongly L-free matrices,”
namely the matrices that are

{(
1 0
1 1

)
,
(
1 1
1 1

)}
-free, under the obvious operation of top-to-bottom reflection.

And of course there are similar bijections with matrices that are
{(

0 1
1 1

)
,
(
1 1
1 1

)}
-free, or

{(
1 1
0 1

)
,
(
1 1
1 1

)}
-free.

12. Γ-and-L-free matrices. Let Qm,n be the set of all m × n matrices of 0s and 1s that are
{(

1 1
1 0

)
,(

1 0
1 1

)}
-free. Chad Brewbaker, after completing his explorations of lonesum matrices, began to suspect that

such matrices might be another pB class, and he communicated this question to Beáta Bényi and Péter
Hajnal. They found [25] that, yes indeed, |Qm,n| = Bm,n, because the same recurrence, (4.6), is satisfied—
but with m and n reversed.

Suppose a matrix of Qm,n+1 has an all-zero first column, or only one 1 in that column. Then its
remaining columns can be any element of Qm,n. On the other hand, if the matrix has t > 1 rows that begin
with 1, those rows must be identical; so there are

(
m
t

)
times |Qm+1−t,n| matrices for every such t.

That argument leads to a very simple bijection from Qm,n to Gm,n: We simply work from left to right.
In any column with more than one 1, zero out the entries to the right of all but the bottommost 1. And to
go back, go from right to left, copying entries from the right of the bottommost 1.
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For example, the element of Q7,4 that corresponds to the transpose of the matrix Γ4,7,999999 in (11.1) is⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 1 1 1
0 0 0 1
0 1 1 1
1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

←→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1
0 1 1 1
1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (12.1)

(Notice that transposition is a bijection between Gm,n and Gn,m, while top-to-bottom reflection is an auto-
morphism of Qm,n.)

Of course Qm,n is bijectively equivalent to m × n matrices that are
{(

1 1
0 1

)
,
(
0 1
1 1

)}
-free,

{(
0 0
0 1

)
,
(
0 1
0 0

)}
-

free, or
{(

0 0
1 0

)
,
(
1 0
0 0

)}
-free, as well as to the n×m matrices that are

{(
0 1
1 1

)
,
(
1 0
1 1

)}
-free,

{(
1 1
0 1

)
,
(
1 1
1 0

)}
-free,{(

1 0
0 0

)
,
(
0 1
0 0

)}
-free, or

{(
0 0
1 0

)
,
(
0 0
0 1

)}
-free.

13. Lonesum matrices redux. In §10 and §11, we’ve constructed bijections from Lm,n to Pm,n to Gm,n.
Thus, we know how to start with an m× n matrix that’s lonesum and find a corresponding m× n matrix
that’s strongly Γ-free. It’s instructive now to study the composition of those bijections, because the resulting
process can be understood in terms of matrices alone, without reference to the intermediate parades that
gave us the original insights.

Given a matrix Γ ∈ Gm,n, we shall find a corresponding matrix Λ ∈ Lm,n, where the correspondence is
reversible. (In fact, if Γ happens to be Γm,n,r, which is the strongly Γ-free matrix of rank r, then Λ will be
Λm,n,r, the matrix that corresponds via the bijection of §10 to the parade Πm,n,r, which was defined in §5!
But we won’t need to “look under the hood” at that machinery, nor will we even need to know anything
about parades when defining this bijection.)

To start, if m = 1 we simply let Λ = Γ. Suppose therefore that m > 1. Let Γ′ be the bottom m − 1
rows of Γ, and let Λ′ be the matrix that corresponds to Γ′. We’ll give a rule that tells how to obtain Λ by
putting an appropriate new row above Λ′, and by making a simple adjustment to Λ′ itself.

The construction depends, of course, on the top row of Γ. If that top row is entirely zero, the top row of
Λ will also be zero. Otherwise let Γ have 1s in columns j1 < · · · < jt of its top row. We know that columns
j1, . . . , jt−1 of Γ

′ will all be zero. (By induction, those columns of Λ′ will also be zero.)
If column jt of Λ

′ is all 1s, we simply let the top row of Λ be the top row of Γ. Otherwise let rλ be the
maximum row sum over all rows that have 0 in column jt of Λ

′; and let the top row of Λ be the top row of
Γ plus row λ of Λ′.

Finally, modify Λ by changing columns j1, . . . , jt−1 so that they all are copies of column jt.
For example, the matrices Λ obtained from Γ4,7,999999 and Γ4,7,701101 in (11.1) and (11.2) are

Λ4,7,999999 =

⎛
⎜⎝
1 0 0 1 1 1 1
0 0 0 1 0 1 0
0 0 0 1 0 1 0
0 0 0 1 1 1 0

⎞
⎟⎠ and Λ4,7,701101 =

⎛
⎜⎝
1 1 1 1 1 0 1
0 0 1 0 1 0 1
0 0 0 0 0 0 0
0 0 1 1 1 0 1

⎞
⎟⎠ . (13.1)

To go back from Λ to Γ, we just need to identify j1, . . . , jt. Of all the columns with 1 in the top row,
they’re the ones whose column sum is smallest.

Exercise 13.1. What lonesum matrix corresponds to the plurisum matrix in exercise 11.1?

Exercise 13.2. What lonesum matrix corresponds to the “typical” matrix in the answer to exercise 11.2?

Exercise 13.3. What matrix Γ corresponds to Λ when Λ is a Ferrers diagram? (A Ferrers diagram has 1
in column j of row i if and only if j ≤ pi, where p1 ≥ · · · ≥ pm is a given sequence of nonnegative integers.)

Exercise 13.4. For how many matrices does this bijection between Lm,n and Gm,n yield Λ = Γ?

Exercise 13.5. Let Λ ∈ Lm,n correspond to Γ ∈ Gm,n as above. True or false: (a) Row i of Λ is zero if and

only if row i of Γ is zero. (b) Column j of Λ is zero if and only if column j of Γ is zero. (c) If matrices Λ̂

and Γ̂ are is obtained from Λ and Γ by deleting all of the zero rows and all of the zero columns, then Λ̂ = Γ̂.
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14. Max-closed relations. Our final example comes from yet another branch of discrete mathematics, the
binary relations between two linearly ordered sets X and Y . Any relation ‘�’ between X = {x1, . . . , xm}
and Y = {y1, . . . , yn} is equivalent to an m× n matrix, whose entry in row i and column j is 1 if xi and yj
satisfy the relation (written ‘xi � yj ’), but it’s 0 if they do not (‘xi �� yj ’).

We assume that the elements are linearly ordered, with x1 < · · · < xm and y1 < · · · < yn. The relation
is called “max-closed” when it satisfies the condition

xi � yj and xi′ � yj′ implies xmax{i,i′} � ymax{j,j′}. (14.1)

Max-closed relations were introduced in 1995 by Jeavons and Cooper [24], who observed that constraint
satisfaction problems can be solved efficiently whenever they involve only max-closed constraints. (In the
special case m = n = 2, a constraint satisfaction problem is a Boolean satisfiability problem, and max-closed
constraints correspond to so-called “dual Horn clauses.”)

Definition (14.1) puts us back into familiar territory, because it amounts to saying that a matrix defines
a max-closed relation if and only if the matrix is

{(
0 1
1 0

)
,
(
1 1
1 0

)}
-free.

Let Mm,n be the set of all max-closed relations between ordered domains of sizes m and n. We shall
prove that |Mm,n| = Bm,n by constructing a bijection between Mm,n and Gm,n, as suggested by Ira Gessel.

Gessel’s bijection is, in fact, amazingly simple, once you’ve seen it. Take any matrix in Mm,n and
rotate it by 180◦. This gives a

{(
0 1
1 0

)
,
(
0 1
1 1

)}
-free matrix (which is equivalent to a min-closed relation). Now

repeatedly take any 2 × 2 submatrix that has the form
(
1 1
1 ∗

)
and change it to

(
0 1
1 ∗

)
. The resulting matrix

is strongly Γ-free(!).
(This transformation essentially works from left to right, looking at the bottommost 1 in each column

and inserting 0s above it when needed. The inverse transformation also works from left to right and looks
at each bottommost 1; but it inserts 1s when necessary.)

For example, the matrices of G4,7 in (11.1) and (11.2) correspond to the min-closed relations

⎛
⎜⎝
1 0 0 1 1 1 1
0 0 0 1 1 1 0
0 0 0 0 1 1 0
0 0 0 0 1 1 0

⎞
⎟⎠ and

⎛
⎜⎝
1 1 0 0 0 0 0
0 0 1 1 1 0 1
0 0 0 0 0 0 0
0 0 0 1 0 0 1

⎞
⎟⎠ , (14.2)

which correspond, in turn, to the max-closed relations

⎛
⎜⎝
0 1 1 0 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 0 0
1 1 1 1 0 0 1

⎞
⎟⎠ and

⎛
⎜⎝
1 0 0 1 0 0 0
0 0 0 0 0 0 0
1 0 1 1 1 0 0
0 0 0 0 0 1 1

⎞
⎟⎠ (14.3)

in Mm,n.

Exercise 14.1. What max-closed 16× 20 matrix corresponds to the “typical” parade Π of (2.2)?

Max-closed binary relations are also equivalent to another well-studied class of combinatorial patterns,
called permutation tableaux, in the cases where the tableau is a rectangular matrix. In this context, Einar
Steingŕımsson and Lauren Williams have devised an interesting “zig-zag” bijection betweenMm,n and Em,n;
see [26] and the exposition in [3, exercise 5.1.4–45].

Temporary note to the reader: I shall revise the following sections soon, because there are much better
ways to present the rest of the story. Don’t bother to read further unless you are really curious!
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15. Companion numbers. Two other symmetrical arrays of numbers turn out to be intimately related to
the pB numbers (0.1), and they too play important roles in our story. They’re called Cm,n and Dm,n, and
they look like this:

Cm,n n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

m = 0 1 1 1 1 1 1 1 1
m = 1 1 3 7 15 31 63 127 255
m = 2 1 7 31 115 391 1267 3991 12355
m = 3 1 15 115 675 3451 16275 72955 316275
m = 4 1 31 391 3451 25231 164731 999391 5767051
m = 5 1 63 1267 16275 164731 1441923 11467387 85314915
m = 6 1 127 3991 72955 999391 11467387 116914351 1096832395
m = 7 1 255 12355 316275 5767051 85314915 1096832395 12764590275

(15.1)

Dm,n n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

m = 0 1 0 0 0 0 0 0 0
m = 1 0 1 1 1 1 1 1 1
m = 2 0 1 5 13 29 61 125 253
m = 3 0 1 13 73 301 1081 3613 11593
m = 4 0 1 29 301 2069 11581 57749 268381
m = 5 0 1 61 1081 11581 95401 673261 4306681
m = 6 0 1 125 3613 57749 673261 6487445 55213453
m = 7 0 1 253 11593 268381 4306681 55213453 610093513

(15.2)

Their bivariate generating functions are

∑
m,n≥0

Cm,n
wm

m!

zn

n!
=

ew+z

(ew + ez − ew+z)2
;

∑
m,n≥0

Dm,n
wm

m!

zn

n!
=

1

ew + ez − ew+z
. (15.3)

Thus if H(w, z) is the generating function for the D array, the corresponding generating function for the
C array turns out to be G(w, z)H(w, z), where G(w, z) is the generating function (1.7) for the B array.
Another noteworthy generating function [30] is

∑
m,n≥1

Cm−1,n−1
wm

m!

zn

n!
= ln

1

ew + ez − ew+z
. (15.4)

Furthermore, since ew+ ez− ew+z = 1− (ew− 1)(ez− 1), these generating functions lead to the explicit
formulas

Cm,n =
∑
k≥0

k! (k + 1)!
{m+ 1

k + 1

}{n+ 1

k + 1

}
; Dm,n =

∑
k≥0

k!2
{m
k

}{n
k

}
. (15.5)

A bit of fooling around reveals that C’s make B’s, and D’s make C’s, in simple ways:

Bm,n = Cm−1,n + Cm,n−1 + [m=n=0]; (15.6)

Cm,n = Dm+1,n +Dm,n+1 +Dm,n. (15.7)

We will see that both of these relations have nice combinatorial explanations. (Formula (15.6) is equivalent
to Equation (9) in a paper [9] by Arakawa and Kaneko, written in 1999; of course their reasoning at the
time was based on analytic number theory, not combinatorics.)

Before proceeding further, let’s pause to observe that (15.6) proves a nonobvious property of the pB
numbers:

n∑
k=0

(−1)kBk,n−k = [n=0]. (15.8)

For the sum (C−1,n+C0,n−1)− (C0,n−1+C1,n−2)+ · · ·+(−1)n−1(Cn−2,1+Cn−1,0)+(−1)n(Cn−1,0+Cn,−1)
telescopes to zero when n > 0. (Relation (15.8) is due to Bényi and Hajnal [2].)
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What kinds of combinatorial patterns are enumerated by Cm,n? We shall see that there are lots and
lots of them. For example, Cm,n is the number of permutations p0p1 . . . pm+n of the m + n + 1 numbers
[0 . .m+ n] that have the doubly bounded property

j −m ≤ pj ≤ j + n for 0 ≤ j ≤ m+ n. (15.9)

(It just like (8.1), but now there’s one more element.)
To prove this, we shall once again evaluate the permanent of a suitable matrix. When m = 4 and n = 7

that matrix, with rows and columns numbered from 0 to m+ n, is

Q+
m,n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15.10)

It’s the same as Qm,n in (8.2), but a new column and a new row have been appended at the right and at the
bottom: The former Sm has been extended by the all-zero column Om,1; the former S

T
n has been extended

by the all-zero row O1,n; and the former Jn,m has become Jn+1,m+1.
Suppose, as before, we place k rooks into the submatrix Jm,n at the upper left. Then, as before, we

must place m − k rooks into Sm and n− k rooks into STn . The new twist is that we must now place k + 1
rooks, not k, into Jn+1,m+1.

The same argument as before now shows that, given k, the permanent is equal to k! (k+1)!
{
m+1
k+1

}{
n+1
k+1

}
;

and that quantity is precisely the term indexed by k in the sum (15.5) for Cm,n.
Similarly, we can show that Dm,n is the number of permutations p1 . . . pm+n of the m + n numbers

[1 . .m+ n] for which we have

j −m < pj < j + n for 1 ≤ j ≤ m+ n. (15.11)

The relevant matrix for m = 4 and n = 7 now takes the form

Q ++
m−1,n−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (15.12)

where we can see S3 in rows (1 . . 4] and columns [8 . . 11); also ST6 appears in rows [5 . . 11) and columns
(1 . . 7]. (In general, Sm−1 will be in rows (1 . .m] and columns [1+n . .m+n), whereas STn−1 will be in rows
[m+1 . .m+n) and columns (1 . . n], assuming that m,n > 0.) With m− 1− k rooks in Sm−1 and n− 1− k
rooks in STn−1, the permanent comes to (k+1)!2

{
m
k+1

}{
n

k+1

}
. This matches (15.5), with k shifted by 1, since

the term for k = 0 in the sum for Dm,n is zero when m+ n > 0.
(These enumerations of permutations that don’t stray too far from the identity permutation pj = j

were carried out in 1975 by Katalin Vesztergombi [17], who actually proved a considerably stronger three-
parameter result: The number of permutations p1 . . . pN of [1 . .N ] that satisfy

j −m < pj < j + n for 1 ≤ j ≤ N , (15.13)
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when 0 ≤ m,n ≤ N and m+ n ≥ N , is f(m+ n−N,N −m,N − n), where

f(r, s, t) =

s∑
k=0

(−1)k+1(r+k)! (r+k)t
{ s+1

k+1

}
;

∑
r,s,t

f(r, s, t)
xr

r!

ws

s!

zt

t!
=

1

ew+wz−(1+x)ew+x
. (15.14)

Cases r = 0, 1, and 2 yield the D, C, and B arrays, respectively. So we should perhaps really be calling
all of these arrays “Veztergombi numbers,” not pB numbers. The case r = 0 had already been resolved by
Kaplansky and Riordan in 1946 [28, §8].)

16. Counting significant subclasses. We’ve defined Vm,n to be the class of all permutations of [1 . .m+n]
that are characterized by the inequalities j − m ≤ pj ≤ j + n, and we know that it has exactly Bm,n

members. We’ve just proved, using slightly different notation, that the subclass characterized by the stronger
inequalities j−m < pj ≤ j+n has exactly Cm−1,n permutations; and that the similar subclass characterized
by j−m ≤ pj < j+n has exactly Cm,n−1 of them. We’ve also proved that the intersection of both subclasses,
namely those permutations with j −m < pj < j + n, has exactly Dm,n members.

Let’s denote the first subclass by V ↙m,n, and the second subclass by V ↘m,n, with an arrow pointing to
the parameter whose significance became “more strict.” It’s also convenient to denote the intersection class
V ↙m,n ∩ V

↘

m,n by V ↙↘m,n. Thus,

|Vm,n| = Bm,n ; |V ↙m,n| = Cm−1,n ; |V ↘m,n| = Cm,n−1 ; |V ↙↘m,n| = Dm,n . (16.1)

By analyzing the bijections that we’ve found between Vm,n and other pB classes, we’re now equipped to
deduce many similar enumerations of interest. (Most of the results in this section were first presented in a
pioneering paper by Beáta Bényi and Péter Hajnal [25].)

The easiest bijection with Vm,n is rule (9.3), which connects it to Em,n. According to (9.3), E ↙m,n is
the set of permutations with qj > j for 1 ≤ j ≤ m and qj ≤ j for m < j ≤ m + n; thus it consists of
the permutations q1 . . . qm+n whose excedance set is precisely [1 . .m]. (The number of such permutations,
namely |E ↙m,n| = Cm−1,n, was first found by Ehrenborg and Steingŕımsson in 2000 [29]; see also [16].)

Similarly, E ↘m,n contains the permutations with qj ≥ j for 1 ≤ j ≤ m and qj < j for m < j ≤ m + n;
their weak excedance set is precisely [1 . .m], and there are exactly Cm,n−1 of them.

Finally, E ↙↘m,n consists of the Dm,n permutations of Em,n that have no fixed points.

What about parades? The set P ↙

m,n that corresponds to V ↙m,n in the bijection of §8 is a bit peculiar:
It comes from permutations that have no rooks on the diagonal of Sm in Qm,n (see (8.2)). According to
Bender’s bijection, those are the parades that prevent that the restricted growth string for the girls from
putting “adjacent” girls gi and gi+1 into the same block of the set partition, for 0 ≤ i < m. Paradewise, it
means that (i) the parade doesn’t begin with g1; and (ii) no girls gi and gi+1 who are adjacent in age are
adjacent in the parade. There are |P ↙

m,n| = Cm−1,n such parades.
Similarly, P ↘

m,n consists of the parades that don’t end with b1 or have adjacent-in-age boys next to each
other in the parade; and P ↙↘

m,n is the intersection. In particular,

P↙↘2,2 = {g2b1g1b2, b1g1b2g2, b1g2b2g1, b2g1b1g2, b2g2b1g1}. (16.2)

Of course there are more interesting subclasses of parades. For instance, how many parades end with a
girl? These are the parades that don’t end with a boy; and the bijection between P and V in §8 will put a
boy at the end if and only a rook is placed into one of the first n columns of row m+ 1 in Qm,n.

Let’s take a closer look at that bijection. If p1 . . . pm+n is the permutation of rooks that corresponds to
a parade Π, as (8.5) corresponds to (3.9), let q1 . . . qm+n be the inverse permutation. For example, we have

q1 . . . q11 = 1 7 2 8 5 3 6 4 9 10 11 (16.3)

in (8.4) and (8.5); qj is the location of the rook in column j.
According to Bender’s bijection, girl gi will be first in Π if and only if qn+1 = i; that’s the condition for

a1 �= 0, . . . , ai−1 �= 0, ai = 0 in the restricted growth string for the girls. Similarly, boy bj will be in the block
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at the end of the parade if and only if pm+1 = j, if and only if bj is first in the left-right reflected parade
ΠR. (In general, Π corresponds to p1 . . . pm+n in Vm,n if and only if ΠR corresponds to q1 . . . qm+n in Vn,m.)

Let V ↗m,n be the subclass of Vm,n whose permutations satisfy pm+1 ≤ n. It corresponds to P ↗

m,n, the
subclass of Pm,n whose parades end with a boy. And |V ↗m,n| is the permanent of the matrix obtained by
zeroing out the m entries in the top row of Jn,m within Qm,n (see (8.2)).

Now here’s a neat trick: If we move that modified row of Qm,n up to the top, we get the matrix Q+
m,n−1

that’s illustrated in (15.10)! Consequently |V ↗m,n| = |P ↗

m,n| = Cm,n−1.
Similarly, the subclass V ↖m,n whose permutations satisfy qn+1 ≤ m has Cm−1,n elements. (Zero out the

leftmost column of Jn,m.) It corresponds to P ↖

m,n, the parades that begin with a girl.
The reflection of a parade that begins with a girl always ends with a girl, and vice versa. As a conse-

quence, we’ve got a nice combinatorial explanation for identity (15.6): The Bm,n parades consisting of m
girls and n boys divide into exactly Cm−1,n that start with a girl and Cm,n−1 that start with a boy, except
of course when m = n = 0.

The same approach can be used to deduce the number of parades that begin with a girl and end with
a boy. It’s tempting to call that subclass P↖↗

m,n, because it’s the intersection of P↖

m,n and P ↗

m,n. However,
we have to be sneaky in order to determine its size. The value of |V ↖m,n ∩ V

↗

m,n| is the permanent of a rather
strange matrix that cannot be converted to a matrix like (15.10) or (15.12) by row and column permutations,
because its nth row and its mth column are both all 1s.

Instead, let’s say that P ↖↗

m,n consists of the parades of Pm,n that begin with a boy and end with a girl.
They’re the reflections of the girl-first-boy-last ones, so their number is the same. (It’s not the intersection
P ↖

m,n ∩ P
↗

m,n, but it’s bijectively equivalent to that intersection.)

And the corresponding permutations V ↖↗m,n are readily enumerated, because |V ↖↗m,n| is the permanent of

the matrix obtained from Qm,n by zeroing out the left column of Sm and the top row of STn . When column
n+1 of that matrix is moved to the far right, and row m+1 is moved to the very bottom, we get Q++

m−1,n−1

(see (15.12)). Hence the permanent is Dm,n.
Good! We’ve just proved a set of formulas that’s dual to (16.1):

|Vm,n| = Bm,n ; |V ↖m,n| = Cm−1,n ; |V ↗m,n| = Cm,n−1 ; |V ↖↗m,n| = Dm,n . (16.4)

Also, for the record,
P↖↗2,2 = {b1b2g1g2, b1g1b2g2, b1g2b2g1, b2g1b1g2, b2g2b1g1}. (16.5)

What about parades that both begin and end with a girl? That’s fun to work out, but it’s a bit more
subtle. We shall subdivide such parades into two further subclasses, P †

m,n where gm does not begin the

parade, and P ‡
m,n, where she does. (Yes, we’re running out of symbols.)

The relevant 0–1 matrix for rook placement in the first case (†) is obtained from Qm,n in (8.2) by zeroing
out the top row of STn , the left column of Jn,m, and the 1 at the bottom left corner of Sm. Moving row
m+ 1 down to the bottom, then moving column n+ 1 to the left, gives the matrix Q++

m−1,n+1 (see (15.12)).

So |V †
m,n| = |P †

m,n| = Dm−1,n+1.

The relevant matrix in the second case (‡) is obtained by zeroing out the top row of STn , then moving
row m + 1 to the bottom, and deleting row m and deleting column n + 1. The result is Q++

m−1,n, whose
permanent is Dm−1,n. (Another way to handle this case, when n > 0, is to realize that gm can begin a
parade only if she is immediately followed by a boy. And if the parade that follows her ends with a girl, it
must be the reflection of one of the Dm−1,n parades in P ↖↗

m−1,n. On the other hand, if n = 0, a parade can
begin with gm if and only if m = 1.)

In summary, we’ve shown that

|P †
m,n| = Dm−1,n+1 and |P ‡

m,n| = Dm−1,n+1. (16.6)

The number of parades in Pm,n that begin and end with a girl is the sum of these two. Hence the total number
of parades that begin with a girl, namely Cm−1,n, is that sum plus |P ↖↗

m,n|, namelyDm−1,n+1+Dm−1,n+Dm,n.
This amounts to a combinatorial proof of identity (15.7), with m shifted by 1.

The number of parades in Pm,n that begin and end with a boy is obtained by interchanging m and n;
so it is Dm+1,n−1 +Dm,n−1.
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Exercise 16.1. What are the elements of (a) E ↖m,n, (b) E
↗

m,n, (c) E
↖↗

m,n, (d) E
†
m,n, (e) E

‡
m,n?

17. The other pB subclasses.
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Open problems. TO BE WRITTEN
how many equivalence classes of parades under automorphisms?
all 120 pairs of 2x2 matrices M: (M,M’) free has 14 for m=n=2; how many pB?
another way to represent parades via Young tableaux?
pad with zeroes so that m× n becomes ∞×∞?
enumerate (weakly) Gamma-free; Spinrad has asymptotics
enumerate maxclosed in three or more dimensions
exploit identity cm,n =

∑
k,l

(
m
k

)(
n
l

)
bk,ldm−k,n−l

prepare expository videos about the theory of parades, oriented to high school students (great oppor-
tunities for animation, costumes, music!)

Appendix. The fundamental recurrence
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
leads to an easy way to find the rth sample

1 ≤ x0 < · · · < xk−1 ≤ n from the interval [1 . . n], given 0 ≤ k ≤ n and 0 ≤ r <
(
n
k

)
:

“While k > 0, test if r <
(
n−1
k

)
; if not, set r ← r −

(
n−1
k

)
,

k ← k − 1, and xk ← n; then in either case set n← n− 1.”
(A.1)

The samples are obtained in colexicographic order: b1 . . . bk−1bk, b1 . . . bk−2bk−1bk+1, b1 . . . bk−2bkbk+1, . . . ,
bn−k+1bn−k+2 . . . bn. Conversely,

rank(x0x1 . . . xk−1) =
(x0 − 1

1

)
+
(x1 − 1

2

)
+ · · ·+

(xk−1 − 1

k

)
. (A.2)

(Theorem 7.2.1.3L in [23] traces this formula to Ernesto Pascal in 1887.)

Here is an algorithm that can be used to transform (5.3) into (5.4). It finds the parade Π of m+1 girls
and n boys that extends a given parade Π′ of m and n′ boys by a given subset {bx0 , . . . , bxk−1}. Here n

′ = n
if k = 0, otherwise n′ = n + 1 − k. The boy represented by xk−1 is called “Max” in the comments below.
His former place in the parade will be replaced by gm+1 followed by the subset that he leads. The algorithm
is conceptually simple; but, as usual, God (or the devil) is in the details.

The parades are represented by two digits strings, s0 . . . sm+1 for the girls and t0 . . . tn for the boys,
as discussed in §2. For example, the digit strings for the parade Π4.7,999999 in (5.4) are s0 . . . s4 = 02331 and
t0 . . . t7 = 02110302. (Initially only s0 . . . sm, t0 . . . tn′ , and x0 . . . xk−1 are given. All operations take place
within those arrays, without needing any auxiliary memory.)

We assume that partition Π′ has order d. In other words, both of the ordered set partitions initially
have d + 1 nonempty blocks. Block 0 for the girls corresponds to set S0 ∪ {g0}, but block 0 for the boys
corresponds to set Td+1 ∪ {b0}, as in §2 and §3 above. The algorithm increases d by 1 if the output parade
Π has higher order than Π′.

X1. [Empty case?] If k = 0, go to step X10.

X2. [Is Max alone?] Set μ ← xk−1 − (k − 1), p ← tμ, and q ← −1. Then for 1 ≤ j ≤ n′, set q ← q + 1 if
tj = p. Go to step X4 if q = 0.

X3. [Split block p.] Set q ← 1 and d← d+ 1. If p = 0, set tj ← d for 1 ≤ j ≤ n′.

X4. [Begin the loop.] Set i← n′, j ← n, and l ← k − 2.

X5. [Loop done?] (At this point i ≤ j.) Go to X8 if i = 0.

X6. [Bypass the subset, except Max.] While l ≥ 0 and j = xl, set l← l−1, j ← j−1, and repeat this step.

X7. [Update tj .] Set p′ ← ti. If q = 1 and p′ > p > 0, set tj ← p′ + 1; otherwise set tj ← p′. Then set
i← i− 1, j ← j − 1, and return to X5. (Boy bj has been renamed.)

X8. [Update the subset.] For 0 ≤ l < k, set txl ← 0 if p = 0, otherwise set txl ← p+ q.

X9. [Update the girls.] If p = 0, set sm+1 ← d. Otherwise, if q = 0, set sm+1 ← p − 1. Otherwise, set
sm+1 ← p, and also set sj ← sj + 1 for all j ∈ [1 . .m] with sj ≥ p. Terminate the algorithm.

X10. [Extend by ∅.] (We will change Π′ by simply appending gm+1 at the end.) If t1, . . . , tn are all nonzero,
go to X12. (Otherwise there was at least one boy at the end.)
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X11. [Increase the order.] Set d← d+ 1. Then set tj ← d for all j ∈ [1 . . n] with tj = 0.

X12. [Append gm+1.] Set sm+1 ← d and terminate the algorithm.

An experimental implementation of this algorithm, together with another program that unranks parades
according to the nonrecursive scheme of §3, can be found online [27]. That website also contains programs
for the corresponding ranking algorithms.

Acknowledgments. The author heartily thanks Ira Gessel for getting him started on this topic. In partic-
ular, Ira suggested formula (1.8), the bijection for acyclic orientations in §7, and the bijection for max-closed
relations in §14.

Answers to the exercises.

8.1. Place rooks into Q16,20, using σ, Σ, τ , and T from (2.4):⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1

� 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 �
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 � 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 � 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 � 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

So p1 . . . p36 = 5 2 6 23 8 17 3 10 26 22 30 15 27 11 34 31 1 12 7 4 20 16 13 14 0 18 33 24 19 21 32 28 36 25 20 35.
(That permutation faithfully encodes the values �1015π	 and �1019γ	, because of (2.3)!)

11.1. Begin with the parade of P0,4. Extend it first by {b1} (b2b3b4g1b1); then by {b1b3} (b4b5g2b1b3g1b2);
then by {b1b5} (b6g3b1b5g2b2b4g1b3; finally by {b1b7} (g4b1b7g3b2b6g2b3b5g1b4). [The recursive rank is 999161.]
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11.2. Since Π has type {b10} we know that the first row puts 1 in column 10. Then Π′, of type {b1b12b19},
gives us 1s in columns 1, 12, 19, and zeros below the first two of those 1s. Then Π′′, of type {b15}, puts a 1
into column 17, since b15 was originally named b17. Here’s the glorious final result:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The author’s program RANK-PARADE2 (see [27]) displays types with original boys’ names as well as their
current names, thereby making it easy to “read off” the rows of this matrix when fed the parade (2.2).

11.3. The solution to the recurrence x1,n = n, xm+1,n = max{1 + xm,n−1, 2 + xm,n−2, . . . , n + xm,1} is
xm,n = m+ n− 1. (This recurrence is derived from the construction of Γm,n,r.)

13.1.
⎛
⎜⎝
1 1 1 1 1 1 1
0 1 1 1 1 1 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0

⎞
⎟⎠ .

13.2. The text’s bijection from Γ to Λ should be applied to the matrix Γ of answer 11.2 from bottom to
top. That is, we start with the bottom row of Γ, getting our initial version of the bottom row of Λ; then
we use the next-to-last and last rows of Γ to get an initial version of the bottom two rows of Λ, namely(
00000000010000010001
00000000010000000001

)
; and so on. The result is

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1
1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1
1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1
1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0
1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1
1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

[The row sums (r1, . . . , r16) are (15, 3, 5, 3, 4, 11, 15, 11, 7, 16, 3, 11, 18, 14, 18, 15) and the column sums
(c1, . . . , c20) are (16, 7, 11, 11, 2, 0, 7, 10, 10, 6, 13, 16, 0, 7, 3, 2, 12, 10, 16 10). Of course they determine
Λ uniquely, since Λ is lonesome.]
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Since exercise 11.2 obtained the original matrix Γ from the parade (2.2), we might expect Λ to be pre-
cisely the lonesome matrix that corresponds to (2.2) according to the bijection of §10. In fact, however, (2.2)
corresponds to the top-to-bottom reflection of Λ, because the top row of Λ corresponds to the orientation of
arcs from g16, not g1. (The parade that does correspond to Λ is obtained from (2.2) by swapping gj ↔ g17−j .)

13.3. Let p0 =∞ and pm+1 = 0. If pi−1 > pi = · · · = pj > pj+1 and i ≤ j, put 1 into columns pj+1, . . . , pi
of row i, and put 1 into column pi (only), in rows i+1, . . . , j. (Notice that going from Λ to Γ in the inverse
bijection requires us to zero out columns j1, . . . , jt−1 of Γ

′.)

13.4. If Λ′ is nonzero and the top row of Γ is nonzero, we must have t = 1. Hence the matrices with Λ = Γ
are of three kinds: (i) at most one 1; (ii) more than one 1, all in a single row or a single column; (iii) more
than one 1 in row i and more than one 1 in column j, with a 1 in cell (i, j) but no 1s in column j below
row i. The number of possibilities is therefore the sum of (i) mn + 1; (ii) m(2n − n− 1) + (2m −m− 1)n;
(iii)

∑m
i=2(2

i−1 − 1)
∑n

k=2

(
n
k

)
k = (2m −m− 1)(2n−1 − 1)n.

13.5. (a) True. (b) True. (c) True. It’s a marvelously simple bijection.

16.1. In addition to the basic constraints pj ≥ j for 1 ≤ j ≤ m and pj ≤ j for m < j ≤ m + n, impose
further constraints as follows:

(a) pj �= m for j > m.
(b) pm+n > m.
(c) pj �= m for j ≤ m, and pm+n ≤ m.
(d) p1 �= m; pj �= m for j > m; pm+n < m.
(e) p1 = m; pm+n < m.

[So we know how to count these subclasses. Too bad they aren’t likely to arise in any practical problems.]
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