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(with special thanks for Enumerative Combinatorics)

I spent the past few days playing with a new(?) toy called “whirlpool permutations,” and I’m writing this
just in case you too find them amusing. I plan to mention them in an exercise for Section 7.2.2.3 of The Art
of Computer Programming.

An m × n matrix has (m − 1)(n − 1) submatrices of size 2 × 2. An m × n whirlpool permutation is
an m × n matrix containing mn distinct numbers, in which the relative order of the elements in each of
those submatrices is a “vortex”—that is, it travels a cyclic path from smallest to largest, either clockwise
or counterclockwise.

Thus there are eight 2× 2 whirlpool permutations of {1, 2, 3, 4}:(
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One simple test for a vortex in a b

c d
is to compare a : b, b : d, d : c, and c : a; the number of ‘<’ cases

must be odd. (Consequently the number of ‘>’ cases must also be odd.)
Here’s a not-quite-random example of a 4× 4 whirlpool permutation:

⎛
⎜⎝
16 3 2 13
9 7 8 10
5 6 12 11
4 15 14 1

⎞
⎟⎠ .

It becomes non-whirlpool if we interchange any two adjacent elements.
One simple exercise, which I leave to the reader, is to find the lexicographically smallest m×n whirlpool

permutation of {1, 2, . . . ,mn}.
Another, which I didn’t think of until after whirlpooling for more than a day, is a cute proof that the

number of m × n whirlpool permutations is a multiple of mn: We can add 1 to all entries of the matrix,
modulo mn(!). This preserves vortices and also their orientation.

Vortices and their orientation are also preserved by adding any constant, modulo any number M that
exceeds the difference between the largest and smallest element.

Among the problems I thought of but cannot solve are:
(a) Enumerate m × n whirlpool permutations for which every pair of consecutive elements is horizontally

or vertically adjacent. (This is a subset of the m× n Hamiltonian rook paths.)
(b) If consecutive elements of a whirlpool permutation are not adjacent, we can interchange them and get

another whirlpool permutation. (For example, 1 and 2 can be exchanged in the 4 × 4 example above;
also 3 and 4, 8 and 9, 9 and 10, 12 and 13, 13 and 14, 15 and 16.) What do the equivalence classes look
like? (The equivalence classes of size 1 are, of course, the solutions to (a).)

(c) Given any m × n matrix filled with a non-whirlpool permutation, is there always a pair of adjacent
elements whose interchange would reduce the number of non-vortices?

Empirical enumeration. A problem that I did solve was to enumerate whirlpool permutations for small
m and n. Here are the results for 1 ≤ m ≤ 6 and 1 ≤ n ≤ 5:

m = 1 1 2 6 24 120
m = 2 2 8 84 1632 51040
m = 3 6 84 5904 1064304 402671760
m = 4 24 1632 1064304 2456909824 15584878111040
m = 5 120 51040 402671760 15584878111040 2179875344187129600
m = 6 720 2340480 273315542400 217353588326290944 823110394280028294344640
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My program WHIRLPOOL-COUNT, which is available online [1], does not exploit the “mod mn” prop-
erty, because I wanted that program to enumerate m× n matrices of permutations that satisfy much more
general constraints, with arbitrary relations applied to each 2 × 2 submatrix—provided that the relations
only depend on the relative order of the elements (not on the actual values). Each of those constraints might
be different, and there are 24! = 16777216 possibilities for each of them.

I don’t have space here to describe the enumeration techniques introduced in that program, except to
mention that it’s a somewhat mind-boggling variant of dynamic programming that I’ve not seen before. It
needs to represent n + 1 elements of a permutation of t elements, where t is at most mn, and there are
up to (mn)n+1 such partial permutations; so I can’t expect to solve the problem unless m and n are fairly
small. Even so, when I can solve the problem it’s kind of thrilling, because the program makes use of a really
interesting way to represent tn+1 counts in computer memory.

Connection to up-up-or-down-down permutations. Of course I looked in the OEIS [2] after computing
the results above—and found that the 2 × n permutations have indeed been studied before: Case 2× n is
sequence A261683, and it is the “running example” of a seminal paper by Nicolas Basset [3].

Let Wn be the number of 2 × n whirlpool permutations. If we assume that there’s exactly one such
permutation for n = 0, the sequence therefore begins

(W0,W1,W2,W3,W4,W5, . . . ) = (1, 2, 8, 84, 1632, 51040, 2340480, . . .).

Basset found the exponential generating function

W0 +W1

z2

2!
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4!
+ · · · = 2

1− (z/
√
2) tanh(z/

√
2 )

− 1.

Since we know that Wn is a multiple of 2n, let’s define

Un =
Wn

2n
,

so that
(U1, U2, U3, U4, U5, . . . ) = (1, 2, 14, 204, 5104, 195040, . . .).

Sure enough, this sequence too is in the OEIS, number A122647; and we learn that it is the number of
permutations of 2n− 1 elements for which every “peak” or “valley” occurs at an even position. I shall call
such a permutation an up-up-or-down-down permutation, because we take either two upward steps or two
downward steps at a time when we read it.

Up-up-or-down-down permutations have been studied by Michael La Croix [7], who found a nice com-
binatorial proof that Un = Vn/2

n−1, where

(V1, V2, V3, V4, V5, . . . ) = (1, 4, 56, 1632, 81664, 6241280, . . .)

is the number of permutations whose peak positions (but not necessarily valley positions) are required to be
even. From this paper I learned that Ira Gessel had connected Vn to greedy algorithms in [5], and that the
exponential generating function

V1
z

1!
+ V2

z3

3!
+ V3

z5

5!
+ · · · = tanh z

1− z tanh z

had already been well known to a number of researchers.
None of the authors mentioned so far connected their work with anything like a whirlpool permutation;

the constraints they considered were strictly one-dimensional. Thus the fact that Wn has a completely one-
dimensional interpretation was a complete surprise to me. I suspect that it will also be surprising to Basset
and Gessel and others, when I tell them about the present note!

Furthermore, the OEIS led me to an intriguing unpublished paper by Guo-Niu Han [6], who introduced
a large variety of comparison-constrained permutations that can naturally be called standard puzzles, and he
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showed that dozens of special cases are equivalent to familiar sequences such as the Catalan and Genocchi
numbers. According to Han’s terminology, m×n whirlpool permutations can be described as “the standard
puzzles of support AFHKQSUZ whose shape is an m × n matrix.” (Each “support” in his terminology is
one of the 24 possible constraints of a 2× 2 submatrix, and has its own identifying letter. For example, the
Catalan numbers correspond to 2 × n matrices of support BC. Han did not, however, specifically mention
the eight-piece set of supports AFHKQSUZ that defines a whirlpool vortex.)

A bijection. Finding that Wn agrees with OEIS sequence A261683 for small n does not, of course, prove
that 2×n whirlpool permutations have the same cardinality as up-up-or-down-down permutations for all n—
although I was 100% convinced after noticing the agreement for n ≤ 6 with computer-obtained counts. That
agreement simply could not be mere coincidence, so it begged the question of finding a formal proof.

The gold standard for such a proof would be to find a one-to-one correspondence between the objects
known to be counted by Un (namely the number of (2n − 1)-element up-up-or-down-down permutations)
and the 2×n whirlpool permutations of {0, 1, . . . , 2n− 1} for which the element in the lower left corner is 0.
Fortunately I stumbled on such a bijection, and it turns out to be surprisingly simple, although it’s quite
different from any other bijection I’ve ever seen before. (During a couple days of struggle I also came up with
lots of non-bijections, which failed to work except in small cases. Indeed I was very near to abandoning this
quest entirely, several times; but Lady Luck has been helping me along during this coronavirus lockdown.)

The bijection below has nice corollaries, because it also shows unexpectedly strong connections between
these two families of permutations. For example,

the whirlpool

(
5 7 6 9 3
0 8 4 1 2

)
corresponds to 5 7 9 8 1 2 6 4 3 ;

and you can see that the clockwise vortices on the left appear in the same two places as the up-up subsequences
appear on the right. In general, we can assign a “signature” of ± signs, of length n− 1, assigning ± to the
orientation of each 2×n whirlpool and to each (2n−1)-element up-up-or-down-down; the bijection preserves
this signature. The two entries ‘5 7’ at the top left of this two-dimensional whirlpool also agree with the
first two entries of its one-dimensional mate. That is not just a coincidence, it’s true in general.

Rather than presenting a formal description, I’ll simply sketch the idea here by working out the example
above. (Full details appear in the short computer programsWHIRLPOOL2N-ENCODE and WHIRLPOOL2N-

DECODE, found on my website [1].) Given a whirlpool permutation Pn with n columns, let the two leftmost
elements of its first row be x and y. Detach the first column from the other n − 1 columns, and map the
latter columns into {0, 1, . . . , 2n − 3}, preserving order, calling the result P̂n−1. (In our example, n = 5,

x = 5, y = 7, P5 =
(
5 7 6 9 3

0 8 4 1 2

)
, and P̂4 =

(
5 4 7 2

6 3 0 1

)
. Notice that the mapping reduces elements < x by 1 but

elements > x by 2. In particular, y has been reduced by 2 in this example, because it exceeds x.) Now add

an appropriate number to each element of P̂n−1, modulo 2(n−1), so that its lower-left entry is 0, and call the
result Pn−1.

(
In the example, we add 2, hence P4 =

(
7 6 1 4

0 5 2 3

)
.
)
If n > 1, apply the method recursively to Pn−1.

Continuing the example, in P4 we have (x, y) = (7, 6) and we get P̂3 =
(
5 0 3

4 1 2

)
, then P3 =

(
1 2 5

0 3 4

)
. In

P3 we have (x, y) = (1, 2) and we get P̂2 =
(
0 3

1 2

)
, then P2 =

(
3 2

0 1

)
. Almost done! Finally (x, y) = (3, 2),

P̂1 =
(
2

1

)
, P1 =

(
1

0

)
. The value of P1 will always be

(
1

0

)
.

Finally, let the respective pairs (x, y) be (xn, yn), (xn−1, yn−1), . . . , (x2, y2), and let x1 = 1. In general
we’ll have 1 ≤ xk , yk < 2k, because xk and yk were elements of a “compressed” whirlpool with k columns. We
now “uncompress” their values, increasing them to (x′k , y

′
k), where x

′
k and y

′
k are the xkth- and ykth-smallest

positive integers not used in xj or yj for j > k. Then x′n y
′
n x

′
n−1 y

′
n−1 . . . x

′
2 y

′
2 x

′ 1 is an up-up-or-down-
down permutation of {1, 2, . . . , 2n− 1}. (In our example, (x5, y5) = (5, 7), (x4, y4) = (7, 6), (x3, y3) = (1, 2),
(x2, y2) = (3, 2), and x1 = 1; hence the output permutation x′5 y

′
5 . . . x

′
1 is 5 7 9 8 1 2 6 4 3, as stated earlier.)

This construction is easily seen to be invertible. The key observation that we need, in order to prove
that the resulting permutation is indeed up-up-or-down-down, is of course that we’ll have y′k > x′k−1 when
xk > yk, yk < x′k−1 if xk < yk. That property follows readily by taking a close look at x′n−1, using the fact
that y > z if and only if x > y, where z is the element directly below y in Pn.

Asymptotic behavior. Since the number of vortices divided by the total number of permutations of four
elements is 8/24 = 1/3, we might expect that the number of m × n whirlpool permutations grows roughly
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as (mn)!/3n. But the table of values above for small m and n suggests that the true growth is significantly
larger. Individual eddies seem to reinforce each other, instead of being mutually repellent.

When m = 2 we have an explicit generating function, so we can evaluate the limiting behavior explicitly
in this case. There’s a singularity of the generating function for Vn when z tanh z = 1; this constant μ is
known to be ≈ 1.19967864. (See §4.8 in [4]. In fact, μ =

√
λ2 + 1, where λ ≈ 0.6627434 is the “Laplace limit

constant.”) Thus the factor 3n in our heuristic estimate should be replaced in the case m = 2 by ((2μ)2)n,
where 2μ2 ≈ 2.878457679781290301551959273309705896777283552987821.

[Incidentally, Cauchy computed the constants μ, μ2, and λ in his historic memoir of 1831 to the Turin
Academy. See page 101 in [9]!]

This asymptotic question suggests a natural problem, to be added to the three open problems already
stated in the introduction:
(d) Is there a “simple” e.g.f. for the number of 3× n whirlpool permutations—or perhaps even for m× n

whirlpool permutations when m is any fixed number?

The fact that enumeration is possible by dynamic programming, which is basically a fancy transfer-matrix
scheme, suggests that each m× n e.g.f. will be differentiably finite [8], with a fairly decent chance of having
singularities that aren’t incredibly difficult to determine. But I haven’t time to investigate this myself.

Concluding remarks. If the topic of whirlpool permutations stimulates you to come up with any interesting
thoughts, please let me know, so that I can include them with the exercise in TAOCP. Don’t get sucked in;
but let’s pool our ideas!
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[7] Michael A. La Croix, “A combinatorial proof of a result of Gessel and Greene,” Discrete Mathematics

306 (2006), 2251–2256.

[8] R. P. Stanley, “Differentiably finite power series,” European Journal of Combinatorics 1 (1980), 175–188.
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News flash (10 May 2020)! Filip Stappers has found the following 5× 5 non-whirlpool whose two non-
vortices cannot be reduced by adjacent swaps:

⎛
⎜⎜⎜⎝

2 8 1 5 9
6 7 3 4 10
16 12 18 14 15
17 11 19 23 20
21 22 13 24 25

⎞
⎟⎟⎟⎠

So the answer to problem (c) is “No.”
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