@x @ 9. The sum of all question numbers whose answers are correct and the same as this one is: (A)~$\in[59\dts62]$ (B)~$\in[52\dts55]$ (C)~$\in[44\dts49]$ (D)~$\in[59\dts67]$ (E)~$\in[44\dts53]$'' @= case pack(0,9,A): case pack(0,9,B): case pack(0,9,C): case pack(0,9,D): case pack(0,9,E): case pack(1,9,A): case pack(1,9,B): case pack(1,9,C): case pack(1,9,D): case pack(1,9,E):@+goto defer; @ @= case pack(0,9,A): case pack(0,9,B): case pack(0,9,C): case pack(0,9,D): case pack(0,9,E): case pack(1,9,A): case pack(1,9,B): case pack(1,9,C): case pack(1,9,D): case pack(1,9,E): for (j=0,i=1;i<=20;i++) if ((o,falsity[i]==0)&&(o,mem[i]==(1<=59 && j<=62);@+break; case B: i=(j>=52 && j<=55);@+break; case C: i=(j>=44 && j<=49);@+break; case D: i=(j>=59 && j<=67);@+break; case E: i=(j>=44 && j<=53);@+break; } if (!u && !i) goto b5; if (u && i) goto b5;@+break; @y @ 9. The sum of all question numbers whose answers are correct and the same as this one is: (A)~$\in[59\dts62]$ (B)~$\in[52\dts55]$ (C)~$\in[44\dts49]$ (D)~$\in[59\dts67]$ (E)~$\in[39\dts43]$'' @= case pack(0,9,A): case pack(0,9,B): case pack(0,9,C): case pack(0,9,D): case pack(0,9,E): case pack(1,9,A): case pack(1,9,B): case pack(1,9,C): case pack(1,9,D): case pack(1,9,E):@+goto defer; @ @= case pack(0,9,A): case pack(0,9,B): case pack(0,9,C): case pack(0,9,D): case pack(0,9,E): case pack(1,9,A): case pack(1,9,B): case pack(1,9,C): case pack(1,9,D): case pack(1,9,E): for (j=0,i=1;i<=20;i++) if ((o,falsity[i]==0)&&(o,mem[i]==(1<=59 && j<=62);@+break; case B: i=(j>=52 && j<=55);@+break; case C: i=(j>=44 && j<=49);@+break; case D: i=(j>=59 && j<=67);@+break; case E: i=(j>=39 && j<=43);@+break; } if (!u && !i) goto b5; if (u && i) goto b5;@+break; @z @x @ 15. The set of odd-numbered questions with answer A is: (A)~$\{7\}$ (B)~$\{9\}$ (C)~not $\{11\}$ (D)~$\{13\}$ (E)~$\{15\}$'' In the falsifying case, I note that question~3 has been treated earlier in the ordering. @= case pack(0,15,A): case pack(0,15,E): goto bad; case pack(0,15,B): force(9,A);@+deny(11,A);@+deny(13,A);@+goto odd_denials; case pack(0,15,D): deny(9,A);@+deny(11,A);@+force(13,A);@+goto odd_denials; odd_denials: deny(1,A);@+deny(3,A);@+deny(5,A);@+deny(7,A); deny(17,A);@+deny(19,A);@+goto okay; case pack(1,15,A): case pack(1,15,E): goto okay; case pack(0,15,C): case pack(1,15,B): case pack(1,15,D): if (o,mem[3]==AA) goto okay;@+goto defer; case pack(1,15,C): goto defer; @ @= case pack(1,15,B):@+if ((o,mem[9]==AA)&&(o,mem[11]!=AA)&&(o,mem[13]!=AA)) goto test_odd; break; case pack(0,15,C): case pack(1,15,C):@+if ((o,mem[1]!=AA)&&(o,mem[3]!=AA)&&@| (o,mem[5]!=AA)&&(o,mem[7]!=AA)&&(o,mem[9]!=AA)&&(o,mem[11]==AA)&&@| (o,mem[13]!=AA)&&(o,mem[17]!=AA)&&(o,mem[19]!=AA))@+goto b5;@+break; case pack(1,15,D):@+if ((o,mem[9]!=AA)&&(o,mem[11]!=AA)&&(o,mem[13]==AA)) goto test_odd; break; test_odd:@+if ((o,mem[1]!=AA)&&(o,mem[5]!=AA)&&(o,mem[7]!=AA)&&@| (o,mem[17]!=AA)&&(o,mem[19]!=AA)) goto b5; break; @y @ 15. The set of odd-numbered questions with answer A is: (A)~$\{7\}$ (B)~$\{9\}$ (C)~$\{11\}$ (D)~$\{13\}$ (E)~$\{15\}$'' In the falsifying case, I note that question~3 has been treated earlier in the ordering. @= case pack(0,15,A): case pack(0,15,E): goto bad; case pack(0,15,B): force(9,A);@+deny(11,A);@+deny(13,A);@+goto odd_denials; case pack(0,15,C): deny(9,A);@+force(11,A);@+deny(13,A);@+goto odd_denials; case pack(0,15,D): deny(9,A);@+deny(11,A);@+force(13,A); odd_denials: deny(1,A);@+deny(3,A);@+deny(5,A);@+deny(7,A); deny(17,A);@+deny(19,A);@+goto okay; case pack(1,15,A): case pack(1,15,E): goto okay; case pack(1,15,B): case pack(1,15,C): case pack(1,15,D): if (o,mem[3]==AA) goto okay;@+goto defer; @ @= case pack(1,15,B):@+if ((o,mem[9]==AA)&&(o,mem[11]!=AA)&&(o,mem[13]!=AA)) goto test15; break; case pack(1,15,C):@+if ((o,mem[9]!=AA)&&(o,mem[11]==AA)&&(o,mem[13]!=AA)) goto test15; break; case pack(1,15,D):@+if ((o,mem[9]!=AA)&&(o,mem[11]!=AA)&&(o,mem[13]==AA)) goto test15; break; test15:@+if ((o,mem[1]!=AA)&&(o,mem[5]!=AA)&&(o,mem[7]!=AA)&&@| (o,mem[17]!=AA)&&(o,mem[19]!=AA)) goto b5; break; @z