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CHAPTER 15

ming, have made him the world’s best-known computer
scientist. Because Knuth likes to include in those
books as much recreational material as he can cram
in, he once visited me at my home in North Carolina.
At that time my library and files were in a condomin-
ium that I rented solely to house them. The apartment
had a kitchen and bathroom. Knuth stayed there for a
week going through my files, leaving a stack of papers
he wanted copied and sent to him. He cooked his own
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MARTiIN GARDNER

10 EucLID AVENUE
AASTINGS-ON-HUDSON
NEw YORK, 10706

Dear Don: 14 Dec 1967

Page proofs of your wonderful Vol.I arrived yesterday, just

in the nick of time. I had phoned Norman Stanton, at ﬁﬁ&esaADD—h&s
and after he promised me the pages before my Dec. 15 deadline,

I went ahead with plans to devote the Feb. column to trees.

As the deadline came ominously close, however, I had to pro-
tect myself against the possibility that the proofs might not
arrive before the 15th, so I typed out a tentative column,
including your surprising discovery about clock solitaire

which you had been good enough to explain in a letter. I

spent last Bvening browsing through the volume and today am
typing out the final copy in which I will give your book an
enthusiastic plug. I explain all this because had 1 gotten

my hands on the pages a bit earlier I could have drawn more

from the book. On the other hand, it may be just as well

that I focus on this one item, holding off other gdms to

mention in later columns and thus provide excuses for additional
plugs.

I am overwhelmed by the wealth of exciting and fresh material
you have managed to pack into the book, especially in view of
the fact that it is only the first of seven volumes! "Monu-
mental® is the only word for it, and I predict the series will
become a classic, like Dickson's history of the theory of
numbers. Moreover, it is written with a grace and humor that
isy as you know, exceedingly rare in books on mathematics. I
greatly enjoyed your dedication, your flow-chart for reading
the series, your notes on the exercises; above all, your choice
of illustrative material throughout and the clarity ms ;

g : and brevity with which you explain everything.
My congratulations on getting the series off to such a fine
start.



tions research, game strategy ana au
kinds of combinatorial problems. The
most striking example I know of the un-
expected applicability of tree diagrams
to a combinatorial problem (in this case
a game of card solitaire) is given in a dis-
cussion of tree theory in Fundamental
Algorithms, just published by Addison-
Wesley as the first volume of a projected
seven-volume series titled The Art of
Computer Programming. The author is
Donald E. Knuth, a mathematician at
the California Institute of Technology.

The solitaire game is best known as
“clock,” although it also goes by such
names as “travelers,” “hidden cards” and
“four of a kind.” The pack is dealt into
13 face-down piles of four cards each,
the piles arranged as shown in the illus-
tration at the left at the bottom of page
120 to correspond to the numbers on a
clock face. The 13th (king) pile goes in
the center. Turn over the top card of the
king pile, then slide it face up under
whichever pile corresponds to the card’s
value. For example, if it is a four, put it
under the four o’clock pile; if a jack, un-
der the 11 o’clock pile, and so on. Now
turn up the top card of the pile under
which you just placed the card and do
the same thing with the new card. The
play continues in this way. If you turn
a card that matches the pile it is in, slide
it face up under that pile and turn the
next top card. If you place a card under
a pile and there is no face-down card on
it (the pile consisting of four face-up
cards of the same value), then move to
the next-higher pile clockwise. The game
is won if you get all 52 cards face up. If
you turn a fourth king before this hap-
pens, the play is blocked and the game
lost.

Starting position for clock solitaire

Bottom cards and their tree connections

Playing clock is purely mechanical,
demanding no skill. Knuth proves in his
book that the chances of winning are
exactly 1/13 and that in the long run
the average number of cards turned up
per game is 42.4. Even more astonishing
is Knuth’s delightful discovery of a sim-
ple way to know in advance, merely by
checking the bottom card of each pile,
whether the game will be won or lost.
Draw another clock-face diagram, but
this time indicate on each pile the value
of the bottom card of that pile—except
for the center, or king, pile, the bottom
card of which remains unknown. Now
draw a line from each of the 12 bottom-
card values to the pile with the corre-
sponding number [see illustration at
right at bottom of next page]. (No line is
drawn if the card’s value matches its own
pile.) Redraw the resulting graph to re-
veal its tree structure [see top illustration
on page 121]. If and only if the graph is
a tree that includes all 13 piles will the
game be won. The arrangement of the
40 unknown cards is immaterial!

The illustrated game, as the tree
graph reveals, will be won. The reader
is invited to draw a similar diagram for
another starting position [see bottom il-
lustration on page 121] to determine
whether it is a win or a loss, and then to
check the result by actually playing the
game. A proof that the tree test always
works will be found in Knuth’s fascinat-
ing and charmingly written 634-page
book. In addition to being the introduc-
tory volume of what will surely be a
monumental survey of computer science,
it is crammed with fresh material that is
of great interest to recreational mathe-
maticians.



» 16. [M24] In a popular solitaire game called “clock,” the 52 cards of an ordinary deck
of playing cards are dealt face down into 13 piles of four each; 12 piles are arranged
in a circle like the 12 hours of a clock and the thirteenth pile goes in the center. The
solitaire game now proceeds by turning up the top card of the center pile, and then
if its face value is k, by placing it next to the kth pile. (The numbers 1,2,...,13 are
equivalent to A,2,...,10,J,Q,K.) Play continues by turning up the top card of the
kth pile and putting it next to its pile, etc., until we reach a point where we cannot
continue since there are no more cards to turn up on the designated pile. (The player
has no choice in the game, since the rules completely specify what to do.) The game is
won if all cards are face up when play terminates. [Reference: E. D. Cheney, Patience
(Boston: Lee & Shepard, 1870), 62—-65; the game was called “Travellers’ Patience” in
England, according to M. Whitmore Jones, Games of Patience (London: L. Upcott
Gill, 1900), Chapter 7.]

Show that the game will be won if and only if the following directed graph is an
oriented tree: The vertices are V1, V2,..., Vis; the arcs are e, ez, .. ., e12, where e; goes
from V; to V; if k is the bottom card in pile j after the deal.

(In particular, if the bottom card of pile j is a “j”, for j # 13, it is easy to see
that the game is certainly lost, since this card could never be turned up. The result
proved in this exercise gives a much faster way to play the game!)

17. [M32] What is the probability of winning the solitaire game of clock (described
in exercise 16), assuming the deck is randomly shufled? What is the probability that
exactly k cards are still face down when the game is over?



beautiful general procedure, discovered
in 1934 by Monroe H. Martin of the Uni-
versity of Maryland, that covers mini-
mum-length bracelets showing all n-tup-
lets for beads of m different colors. For
example, if there are three colors, 0, 1, 2,
and we want a bracelet showing all 27
triplets, we start with 000 and proceed
to add digits, always selecting the high-
est digit that will not duplicate a triplet
that has already been formed. The re-
sult is 000222122021121020120011101.
The procedure is given in exercise No.
17, page 33, of the second volume of
Donald E. Knuth’s monumental continu-
ing series, The Art of Computer Pro-
gramming (Addison-Wesley, 1969). The
book is as rich in recreational material
and little-known historical sidelights as
last year’s first volume, and [ recommend
it highly. In Volume I (answer to ex-
ercise No. 23, page 379) Knuth gives
a remarkable formula (due to N. G.
de Bruijn of Holland) that provides the
number of minimum-length bracelets of
n-tuplets and m colors, including re-
versals as different. Knuth tells me that
when reversals are not considered differ-
ent (as in the problem given here), the
formula is

1 \mn—=1
2()11 )
mn

If reversals are considered different,
the formula is simply doubled. It is not
hard to prove, Knuth adds, that no
bracelets are symmetrical in the sense
that they are identical with their re-
versals. The only exception is the four-
bead doublet bracelet of two colors; in



206  ARITHMETIC 41

=144 +i +1+44

)
W2

ﬁﬁ:@ 2ed
ey
TR
Tt ﬁgg +1
28 pLyiy
FAsasuens
A
2
—1— —i -

Fig. 1. The fractal set S called the “twindragon.”

Another “binary” complex number system may be obtained by using the
base i — 1, as suggested by W. Penney [JACM 12 (1965), 247-248]:

(-..a4a3020100.0-1 ... )i—1
=---—4das+ (2i+2)as — 2iap + (i—1)ay + ao — (i+1)ay + .

In this system, only the digits O and 1 are needed. One way to demonstrate that
every complex number has such a representation is to consider the interesting
set S shown in Fig. 1; this set is, by definition, all points that can be written as
S k>1ax(i — 1)7*, for an infinite sequence a, az, as, ... of zeros and ones. It is
also known as the “twindragon fractal” [see M. F. Barnsley, Fractals Everywhere,
second edition (Academic Press, 1993), 306, 310]. Figure 1 shows that S can be
decomposed into 256 pieces congruent to 11—65 . Notice that if the diagram of S
is rotated counterclockwise by 135°, we obtain two adjacent sets congruent to



Floor 9: — 45 =99

899 458
Floor 8: — 256 ———————25—%-58 288
899 245 778 577
Floor 7: — 19— ¢ 18———% 58— ¢56—%-77
889 124 677 556
Floor 6: — 24 24 44 #44——& 56— 66
889 122 677 445 456 455
Floor 5: — 89 $77 X 77 —#26 —————¥24—¥55
778 122 266 244
Floor 4: — 78 #66 ¥ 12 44
667 122
Floor 3: — 13 413 & 23— 33—
667 112123122
Floor 2: — 67 —4-03 V01— 22—
036 011
Floor 1: — 36 —¢-00 — 11—
000 000
Begin End

Fig. 88. An optimum way to rearrange people using a small, slow elevator. (People
are each represented by the number of their destination floor.)



2024 = 1234-5+6+789
= (((.12+3.4)%5)/.6)*(78-9)
= (((1/(.2-.3))/.4)/.5-.6)/(.7/.8-.9)
= -1+(2/.3)*45%6.78-9
= —-((((1+.2)/.3)/.4)*5+.6)/(.7/.8-.9)

— Dr. I. J. Matrix

88/3 times 69 is 2024
2/.3 times 45 times 6.78 is 2034

there are 1329 representations starting without —
there are 1679 representations starting with -



QUEENS

Maximal independent sets:
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Maximal induced bipartite subgraphs:
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Maximal induced tripartite subgraphs?




Lexicographically smallest solution to the infinite queens problem
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n-th queen in column qp;
th ' 1 A065188

4999999997 = 618033989
4999999998 = 1618033985
4999999999 = 618033938
41000000000 = 1618033988
41000000001 = 1618033990
41000000002 = 1618033992
41000000003 = 1618033994
41000000004 = 618033991
gn can be computed with about 5.726 memory accesses

Ly



N queens as close or as far from the center as possible
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N queens with as many 3-in-a-line as possible
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(Dudeney’s “Orchard Problem”)
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MacMahon’s tiles

The great combinatorialist P. A. MacMahon introduced several families of
colorful geometric patterns that continued to fascinate him throughout his life.
For example, in U.K. Patent 3927 of 1892, written with J. R. J. Jocelyn, he con-
sidered the 24 different triangles that can be made with four colors on their edges,

{(AAAAAAAAAAAA
AMADAAALAAAAAAA}

and showed two ways in which they could be arranged to form a hexagon with
matching colors at adjacent edges and with solid colors on the outer boundary:

AV
WA A

(58)

(Notice that chiral pairs, like 4 and A in (58), are considered to be distinct;
MacMahon’s tiles can be rotated, but they can’t be “fipped over.”)

Four suitable colours are black, white, red, and blue,
as they are readily distinguishable at night.

— P. A. MACMAHON, New Mathematical Pastimes (1921)



131. [28] (P. A. MacMahon, 1921.) Instead of using the colored tiles of (58), which
yield (59), we can form hexagons from 24 different triangles in two other ways:
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The left diagram shows a “jigsaw puzzle” whose pieces have four kinds of edges. The

right diagram shows “triple three triominoes,” which have zero, one, two, or three spots

at each edge; adjacent triominoes should have a total of three spots where they meet.
a) In how many ways can that jigsaw puzzle make a hexagon? (All pieces are white.)
b) How many triomino arrangements have that pattern of dots at the edges?

133. [21] (P. A. MacMahon, 1921.) A set of 24 square tiles can be con-
structed, analogous to the triangular tiles of (58), if we restrict ourselves
to just three colors. For example, they can be arranged in a 4x 6 rectangle |,
as shown, with all-white border. In how many ways can this be done?




138. [25] (Heads and tails.) Here’s a set of 24 square tiles that MacMahon missed(!):

(308 T 2T 0L D LT,
300 0 Ry T T 0 1 )

They each show two “heads” and two “tails” of triangles, in four colors that exhibit all
possible permutations, with heads pointing to tails. The tiles can be rotated, but not

where the 4 x 6 arrangement will tile the plane; the 5 x 5 arrangement has a special
“joker” tile in the middle, containing all four heads.












An 8-by-8 pattern is called tame if it stays inside its
8-by-8 box in one Life step. Otherwise it is wald.

(Therefore ﬁ is tame and @ is wild.)




An 8-by-8 pattern is called tame if it stays inside its
8-by-8 box in one Life step. Otherwise it is wald.

(Therefore ﬁ is tame and @ is wild.)

Exactly 21,929,490,122 tame patterns vanish in one step.
(And exactly 5,530,201,631,127,973,447 on an 11-by-11 board.)
(And 4,080,967,796,136,376,032,811,105,207,453 on 15-by-15.)

(Tom Rokicki, 31 October 2010; A134963)

Here’s one of the eight 8-by-8s that that have weight 46:




There are 12,942,036,750 wild patterns that vanish inside the 8-by-8:

I___-___l



A mobile path has no cell alive more than four steps in a row.
A mobile flipflop has period 2




A gourmet 8-by-8 mobile path always has between 6 and 10 live cells:
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Problem: Is there a gourmet 8-by-8 mobile path of length 127
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Light Speed in Life
fl,y) =2[z>0]+yly>0]+ (z +y) [z +y>0]
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6 18 20 22 24 26 28 30 32
4 16 18 20 22 24 26 28 30
14 16 18 20 22 24 26 28
214 16 18 20 22 24 26
012 14 16 18 20 22 24
10 12 14 16 18 20 22
10 12 14 16 18 20
10 12 14 16 18
10 12 14 16
9 11 13 15
8 10 12 14
7 9 11 13
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Light Speed in Life
fle,y) =2[z>0]+y[y>0]+ (z+y) [z +y>0]

11 12 13 14 1516 18 20 22 24 26 28 30 32
9 1011 121314 16 18 20 22 24 26 28 30
7 8 9 101112 14 16 18 20 22 24 26 28
5 6 7 8 9 1012 14 16 18 20 22 24 26
4 4 5 6 7 8 1012141618 20 22 24
3 3 3 45 6 810121416 18 20 22
2 2 2 2 3 4 6 810121416 18 20
111112 46 8 1012 14 16 18
O O0O0OOZ246 810121416
O 0O00O0DODO1135 7 9111315
O 0O00O0OOO0O12 46 8 1012 14
0000001235 7 91113
O 0O0O0O0OOO0O12 3 46 81012
O 0O0O0OODO12 3 45 7 911



Slitherlink




Slitherlink: Smallest density of all-2 clues
(Nikolai Beluhov; Palmer Mebane)
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upper bound 11/16



Masyu




Masyu: Smallest density of all-white or all-black clues
(Nikolai Beluhov)
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(The loop must pass through all four corner cells)



Packing Pentominoes in 10-by-10
(Aad van de Wetering)

12 colored pentominoes, 8 white “ghosts”
Every row has six nonghost cells, four ghost cells
Every column has six nonghost cells, four ghost cells




An amazingly graceful square
(K4 0 Kg)

48 0 39 35
1 17 47 23
38 45 7 2
19 20 5 46



Some dazzling patterns arise when we consider “KP graphs” of the form
K, 0 P,, which consist of » > 1 cliques in a row, each of size n > 2. For example,
here are two of the many graceful labelings of Ky0 Py and K5O P;:

10 56 99 0 100 13 93
3366 7 77 12 87 59
8195 1 41 3 94 8 |. (39)
8 2 97 15 70 26 71
89 6 79 52 69 45 24

Each of the 10 columns on the left has six differences; in the first column they are
{|0-1],|0-91|,|0 - 95],]1 — 91}, |1 — 95|, |91 — 95|} = {1,91,95,90,94,4}. And
each row also has nine differences between adjacent columns; in the first row they
are {|0 — 96|, |96 — 4]|,...,|22 — 84|} = {96,92,89,88,85,79,77,66,62}. Those
60+ 36 differences are all distinct! And so are the 70+ 30 differences on the right!!

0 96 4 93 5 90 11 88 22 84
1 3 13 6589 14 62 25 81 58 |
91 9 87 7 77 50 18 72 51 69 |’
95 28 73 12 55 17 82 33 68 27



Kp 0 P2 is ungraceful for alln > 5
(computer-generated proof; 1.6 megamems)



Kp 0 P2 is ungraceful for alln > 5
(computer-generated proof; 1.6 megamems)

Kn o P3 is ungraceful for all n > 6
(computer-generated proof; 1.9 teramems)



Fig. 108. Some 0 56 1

graceful gems: The 2 ;; 5 36 9
unique labelings of 7 19 12 6 52
KsoP; and KeDPs. 21 11 33 55 26
Also a (less rare) 25 2 44 2 49
KsDP4 and K5EIC'5. 57 20 11

SEATY pesun

40 69 17 53 3 18 69 10 33

62 3 72 70 41 70 23 59 20

73 2 60 6 73 9 43 24 51

742 7114 8

77 51 7 45






A graceful miracle
(Tom Rokicki)

98 —86 =12

107-106=1 101-—-88=13
64 —62=2 19-5=14
107-104 =3 41-26=15
97~93=4 31-15=16
58—-53=93 25-8=17
101-95=6 59 —41=18
16—-9=7 101-82=19
96—-88=8 106—86=20
11-2=9 28—-7=21
41-31=10 84-62=22
95—-84=11 25~-2=23

33-9=24

25-0=25
90 — 64 = 26
53 —26 =27
90 — 62 =28
84 —-55=29
9262 =30
64—33 =31
55 —23 =32
59 —26 =33
100 — 66 = 34
101 — 66 = 35

92 — 56 = 36
48 -~ 11 =37
62 -24=38
97 —~ 58 = 39
95 —55 =40
66 —25 =41
48 —6 =42
62 - 19 =43
55—-11=44
93 —48 =45
48 -2=46
53 —6=47

64 — 16 =48
97 —48 =49
83 -33=50
56 —5 =51
58 — 6 =52
106 — 53 =353
82-28=54
64 -9=355
83 —27 =56
98 — 41 = 57
66 —8 = 58
107 —48 =59

86 — 26 =60
84 - 23 =61
78 — 16 =62
66 —3 =63
66 —2 =64
84 —-19 =65
90 — 24 =66
98 —31 =67
92-24=68
78 — 9 =69
93 —-23 =70
86—-15="71

98 —26 =72
92-19=73
83-9=T4
82-7=175
95~19="76
82-56=T7
103—-25=78
104 -25=179
106 —26 = 80
88—-7=281
93 -11=282
98 —15=283

95-11=284
88 —-3=285
86 —0=86
92-5=287
103 -15=88
96 -7=289
95 —5=90
97—-6=091
100 -8 =92
95-2=93
101 -7=94
103 -8 =95

101 -5 =96
100 -3 =97
101 -3 =98
101 ~2=99
106 — 6 =100
107 -6 =101
104 -2 =102
103 ~0 =103
104 —0 =104
107-2=105
106 — 0 = 106
107 —-0=107



The 10-by-10 Strong Strong Queen Prime Attacking Problem
(G. L. Honacker Jr. and Peter Weigel)

11 34 99 96 71 06 75 94 73 82
98 37 10 33 00 95 72 83 76 93
35 12 97 70 07 18 05 74 81 84
38 09 36 17 32 01 80 85 92 77
131631086904 19 78 89 86
30 39 14 41 02 79 58 87 20 91
15 42 47 68 59 66 03 90 57 88
48 29 40 45 26 63 60 23 54 21
43 46 27 50 67 24 65 52 61 56
28 49 44 25 64 51 62 55 22 53

closed knight’s tour of length 100
every prime number is attacked by the red queen
every power of 2 is also attacked by the red queen
00 is in second row and attacked by the red queen
the digits of pi — 31, 41, 59, 26 — appear in fixed places
exactly three solutions; 532 gigamems of exhaustive search



ac e LAl



