The Early Development of Programming Languages 91

in Berichte der Gesellschaft fiir Mathematik und Datenverar-
beitung 63 (1972), Part 1, 32 pages. English translation, 106
(1976), 7-20.

[ZU 45] K. Zuse, Der Plankalkiil, manuscript prepared in 1945. Pub-
lished in Berichte der Gesellschaft fiir Mathematik und Daten-
verarbeitung 63 (1972), Part 3, 285 pages. English translation
of all but pages 176-196, 106 (1976), 42-244.

[ZU 48] K. Zuse, “Uber den Allgemeinen [sic] Plankalkiil als Mit-
tel zur Formulierung schematisch-kombinativer Aufgaben,”
Archiv der Mathematik 1 (1949), 441-449.

[ZU 59] K. Zuse, “Uber den Plankalkiil,” Elektronische Rechenanlagen
1 (1959), 68-71.

[ZU 72] Konrad Zuse, “Kommentar zum Plankalkil,” Berichte der
Gesellschaft fiir Mathematik und Datenverarbeitung 63
(1972), Part 2, 36 pages. English translation, 106 (1976),
21-41.

Addendum

Two other languages, Transcode and PACT I, deserve to be part of the
story as well, so they appear in Table 1 above although they were un-
fortunately missed by the authors when we first compiled this history.
Transcode was developed for the FERUT computer, a clone of the
Ferranti Mark I that was installed at the University of Toronto in 1952.
The authors of this language, J. N. P. Hume and B. H. Worsley, devised
a way to cope with FERUT’s awkward two-level storage that was more
efficient than the AUTOCODE approach being taken independently by
Brooker in Manchester, because they expected Transcode programmers
to be aware of FERUT’s overall characteristics. To perform the TPK al-
gorithm they might have punched the following codes onto a paper tape:

000 INST 019 Inputs the following 19 Instructions.

001 READ 001.0 000.0 X00.0 Copies DRUM location 1 into X-page.
002 ADDN C01.0 CO01.0 Z01.0 Sets initial value of ¢ =10 — j to 5 + 5.
008 BSET 000.5 000.0 000.0 Sets initial value of Bs to 0.

004 LOOP 011.0 000.6 000.0 Prepares to loop 11 times, using Bs.
005 KOMP X11.5 C02.0 Z02.0 Places |a;| — 0 in Z02.

006 3QRT Z02.0 000.0 Z02.0 Forms |a;|'/”.

007 MULT X11.5 X11.5 Z03.0 Places a; - a; in Z03.

008 MULT X11.5 Z03.0 Z03.0 Forms a; - a; - a;.

009 MULT C01.0 Z03.0 Z03.0 Forms 5a; - a; - a;.

010 ADDN Z02.0 Z03.0 Z02.0 Forms f(a;).

92 Selected Papers on Computer Languages

011 SUBT C03.0 Z02.0 z03.0 Forms 400 — f(a;).

012 TRNS 014.0 000.0 Z03.0 Transfers control if 400 — f(a;) > 0.
013 OVER C04.0 000.0 Z02.0 Enters 999 in place of f(a;).

014 PRNT 002.2 010.0 Z01.0 Prints answers.

015 SUBT Z01.0 C05.0 Z01.0 Adjusts ¢ to its next value.

016 INCB 000.5 003.0 000.0 Adjusts Bs to its next value.

017 TRNS 005.0 000.6 000.0 Ends loop, adjusting Bs.

018 HALT 000.0 000.0 000.0 Programs a stop.

019 QUIT 000.0 000.0 000.0 Terminates the Instructions.

020 CNST 5++ 1+100- 4+2+ 999+2+ 1++ " Specifies the five constants.

021 NUMB ao ai... aio " Specifies the input data.
022 DRUM 001 Stores block 1 of numerical data.
023 ENTR Begins compilation and execution.

The variables in Transcode, other than those in B registers, were
floating-point numbers X01, X02, ..., Y01, YO2, ..., Z01, Z02, ..., con-
sisting of three 20-bit words each, namely a 40-bit signed fraction and a
signed 20-bit exponent. But Transcode programmers didn’t have to deal
with binary notation; for example, the five constants CO1 = 5, C02 = 0,
C03 = 400, C04 = 999, CO5 = 1 in the program above are specified on line
020 in decimal form as (mantissa) (sign) (exponent) (exponent sign). A
constant like —.0073 would be ‘73-3-’; and the same conventions applied
to input data in a NUMB specification such as line 021. Notice that they
used 1719 for the constant zero(!). The PRNT command on line 01/
would output ZO1 and Z02 to a line on FERUT’s typewriter, showing
both numbers in floating-point notation with ten significant digits.

Variables were stored backwards in memory, so that the address of
the first word of X02 was 3 locations less than the address of X01. The
main loop of this program, governed by instructions 003, 004, 016, and
017, is performed for eleven index register settings (Bs, Bg) = (0, 30),
(3,27), ..., (30,0); thus X11.5 is X11 the first time, then X10, ..., then
X01. Meanwhile variable i = Z01 steps through the values 10, 9, ..., 0,
because of instructions 002 and 015.

Programmers could say KOPY at the end, following ENTR; then the
compiled instructions would be punched on paper tape, for subsequent
use as a subroutine in other programs. Since paper tape code was equiv-
alent to teletype code, programs could also be transmitted “online” to
Toronto from remote sites in Canada. [For further details, see J. N. P.
Hume and Beatrice H. Worsley, “Transcode: A system of automatic cod-
ing for FERUT,” Journal of the Association for Computing Machinery 2
(1955), 243-252; J. N. Patterson Hume, “Development of systems soft-
ware for the Ferut computer at the University of Toronto, 1952 to 1955,”
IEEE Annals of the History of Computing 16,2 (Summer 1994), 13-19.]

